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A TEST-PARTICLE ANALYSIS OF PLASMA TURBULENCE
IN ASTROPHYSICS

by D, E. Hall

ABSTRACT

An important problem of long standing in astrophysics is that of

the natural occurrence of charged particles of extremely high energy.

The classical form of the problem is that of the origin of cosmic rays,

but to this may now be added observations of particles generated in

solar flares, in and near the magnetosphere of the earth, in supernovae,

in extragalactic radio sources, and in certain laboratory plasmas. In

each of these cases, there is reason to believe that the particle accelera-
tion is connected with plasma turbulence or instability.

To investigate the origin of these high-energy particles, an idealized
problem has been studied. Test particles are pictured in a general con-
figuration of steady or slowly changing electromagnetic fields, to which
an arbitrary spectrum of small random fluctuations is added to represent
weak plasma turbulence. The behavior of the particles is found in terms
resembling the quasi-linear theory of plasma disturbances, and advantages
of this method over the previously used Fokker-Planck approach are de-
scribed, The limits of applicability of the theory are stated and ex-
plained, The result takes the form of a generalized diffusion equation in
the phase space; the "diffusion coefficients" are determined by past-his-
tory integrals of the second-order correlation functions of the fluctua-
tions, evaluated for pairs of points lying on "unperturbed orbits."

The particular case considered in detail is that of relativistic
particles moving in stochastic fields in an otherwise uniformly magnetized
plasma. Limiting cases of acceleration, scattering, and spatial diffusion
are obtained and discussed; and the results are shown to reduce to those
found by other workers (such as Sturrock, Puri, and Jokipii) in appropriate
limits. Transverse cyclotron acceleration by low~frequency waves is pro-
posed as the most significant process of stochastic acceleration because

of a "gselection rule" which is expected to increase its effectiveness as
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the particle energy increases, if there is a "universal spectrum" of
plasma turbulence for which amplitude is a decreasing function of mode
frequency.

The loss of energy by synchrotron radiation is also important for
electrons in several of the situations mentioned. This is considered
both alone and in combination with stochastic acceleration and other ef-
fects, with special attention being given to the possibilities for gen-
erating power-law energy spectra. The relevant properties of quasars
are reviewed and preliminary comparison is made between the model calcu-
lations and the observational data. It is concluded that stochastic ac-
celeration is important in the generation of high-energy particles, that
the present calculation has shown how this may reasonably happen, and
that this process deserves further and more detailed consideration. Sev-
eral suggestions are offered for additional observational and theoretical

study.
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Chapter 1

ENERGETIC PARTICLES IN NATURE

I. General Introduction

One of the most interesting aspects of the rapidly growing field of
astrophysics is the observation, in a wide variety of sources, of evidence
for highly suprathermal particles. By this, we mean that there is present
a group of particles having energies much higher (in fact, we are thinking
primarily of several or many orders of magnitude higher) than the local
thermal energy, and that the number of such particles predicted by a Max-
wellian velocity distribution would be quite negligible by comparison.
Although there are many distinctions that can be made among these differ-
ent sources, there seems also to be a common threat connecting them. It
has been pointed out more than oncel—4 that this phenomenon is associated
with the occurrence of strong turbulence in these astrophysical plasmas.
The association provides an explanation of sorts for the origin of the
energetic particles. But this tends to take the unsatisfying form of a
statement that the energetic particles have some way of approaching an
equipartition of energy with the turbulence, and the present limitations
of plasma turbulence theory leave us with little information as to further
details. This generalization will not be strikingly altered by the pres-
ent work, for we have chosen only a certain few facets of the problem for
study under simplifying assumptions; and we shall ask at the end whether
the results can enhance our understanding of the general problem in some

way.

II1. Examples
In order to have proper background for this study, we first give a
brief descriptive review of the principal observed cases of the energetic-
particle phenomenon.

A. Solar Flaress’

These explosive events in the chromosphere of the sun are closely

7
associated with the emission of certain kinds of radio noise. The
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disturbances known as Type III bursts are believed to be due to the ex-

citation of plasma oscillations by streams of electrons that are shot

upward from the flare region with velocities of the order of 1/10 to 1/2

that of light.8 Type IV bursts seem to be synchrotron radiation, indi-

cating relativistic electrons again, Thus, there are many electrons with

many keV, or even a few MeV, of energy where nothing else about the flare

is generally thought to indicate any possibility of thermal energies more

than a very few eV, (A thermal energy of one eV is equivalent to a tem-

perature T = 11,600°K.) \

Some large flares are also observed to generate high-energy protons
and heavier particles; they are commonly called "proton flares."g’10
These particles travel to the earth and beyond with energies as high as a
Bev and may be detected by artificial satellites11 and balloons,12 polar-
cap absorption monitors,13 or in the case of the stronger events by a sub-
stantial increase (especially at higher latitudes) over the usual general
cosmic ray activity as routinely monitored on the ground.14 (The refer-
ences given here are merely examples from an extensive literature.) The
fate of these particles, as well as of the low-energy end of the galactic
cosmic-ray spectrum, is one of the most important problems in the study
of the interplanetary medium,15 and parts of the work that will be pres-
ented below have potential application in this field.

There is good reason, both observational16 and theoretical,17 to
believe that the instability underlying a solar flare causes the chro-
mospheric material to become turbulent and break up into a filamentary
structure with a scale of the order of one km. It seems likely that the
generation of high-energy particles is a normal property of flares; wheth-
er we do or do not observe the arrival of protons on the earth, for example,
depends on details such as the size of the flare and the configuration of
magnetic field lines around the flare,ls_20 which may or may not allow the

protons to leave the sun.

B. The Earth's Magnetosphere

As the tenuous stream of hot plasma known as the "solar wind" flows
outward at supersonic speed from the sun, it gives rise to a standing

shock wave when it encounters the earth's magnetic field. Satellite




experiments have shown21’22 that electrons with many keV of energy are
generated in this bow shock region, and theories have been proposed to
explain this.23_25 Satellites far cut in the tail of the magnetosphere
have also found "islands" of highly energetic electrons26 about which
much remains unknown, but which may have important connections with bow
shock acceleration or with radiation-belt and auroral phenomena closer
to the earth,

The satellite experiments in which the energetic electrons were dis-
covered also recorded a highly turbulent magnetic field in the region
around the bow shock and inward to the magnetopause; this has been in-
volved in the explanations referred to above. Correlation between appear-

ances of energetic electrons and fluctuations of magnetic field strength

in the magnetospheric tail has recently been reported.

C. Supernovae

A major portion of our knowledge of these great stellar explosions
comes from the Crab Nebula (M1, NGC 1952, Taurus A). The light of the
original explosion arrived on earth in A.D. 1054 from a distance of some
six thousand light-years. As presently observed, the ejected matter has
spread over a region about a light-year or two in size and consists of
many globs and filaments. The larger part of its visible radiation is

' it is also

in a bluish continuum which exhibits strong polarization;
among the strongest radio and X-ray sources. Shklovskii's explanation
that we are observing synchroton radiation is now widely accepted and, as
will be seen below, has been found useful in explaining other unusual ob-
Jects more recently discovered. According to a recent estimate, the
radiating electrons are in a field of the order of 10“3 gauss and have

8 2
energies in the approximate range 10 to 3 X 101 eV, the differential

.

spectrum N(E) varying as E * [The number of particles with energy be-
tween E and E + dE is N(E) dE.]

There is no direct evidence to confirm it, but the presence of such
highly energetic electrons has made it very attractive to think that there
are similar numbers of nuclei present with comparable or even higher ener-
gies, and this has made supernovae as a class a leading candidate for the

. . 32,33
source of the Galactic cosmic rays,
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D. Cosmic Rays

In contrast to the other examples mentioned here, extensive research
in cosmic rays dates back over fifty years. The interaction of these par-
ticles with the earth's atmosphere, however, has taken up a large portion
of this work and is not of interest here. When information about the
"primary" cosmic ray flux was finally unraveled, it pertained mostly to
the following three very remarkable properties:

1. The chemical composition grossly resembles that of the rest of
the universe, but upon closer inspection the medium and heavy
nuclei are somewhat overabundant with respect to hydrogen while
the light nuclei Li, Be and B are overabundant by five or six
orders of magnitude. The interpretation of these abundances
involves the abundances in the source(s), the possibility of pref-

erential acceleration,35 and the certainty of differing rates of
loss by collision during transit from source to observer.

2. The intensity is found to be isotropic and constant in time to
high accuracy, implying in some sense either a nonlocal and non-
transient source or an efficient scattering mechanism.

3. The energy spectrum extends to extremely high particle energies,
at least of the order of 1020 ev36 pyut probably not much more .37
The dependence of number upon energy is drastically nonthermal;
except for a slight kink near 1015 eV, it is well described by
a negative power law with an exponent of about 2.5. This differ-
ential energy spectrum is especially interesting in the present
context.

Fermi's attemptsss’ to explain the acceleration of these particles
were not really successful, but have had great importance in stimulating
further work on the problem. The current view tends to split the situa-
tion into two parts: first is "injection" of energetic particles into

the galactic or intergalactic background by some source, or class of
sources, and second is the subsequent storage, stirring, diffusion and
loss in the ambient medium. The Russian workers in particular have studied
this second part in considerable detail. Fermi's continuing acceleration
is regarded as too small to be of interest, because the parameters that
determine it may be independently observed and they do not have suitable
values. Thus the principal burden of acceleration is thrown back upon
the injecting sources. The detailed explanation of the acceleration with-

in the sources in terms of their local properties remains very much un-

solved, even though the division explained above enables this to be isolated




from many other aspects of cosmic ray study so that they may be studied
and solved independently.

A special difficulty in the study of possible sources of injection
is that direct observations give information only about energetic elec-
trons, and all properties proposed for energetic nuclei in the cosmic
ray injection accelerator can be compared with these observations only
by way of poorly understood indirect inferences. We shall comment further

on the possible solution of this difficulty in Chapter 6.

E. Extragalactic Radio Sources

There are a number of elliptical and irregular galaxies in which
some sort of explosive event seems to have taken place and transformed

. . 41,42
them into “radio galaxies.' '’ One of the more notable examples is

M82 (NGC 3034, 30231) with its well-known Doppler velocity profile;43
another is M87 (NGC 4486, 3C274, Virgo A) with its strange jet emitting
polarized 1ight.44 The prototype of repeated explosions, each creating
a double radio source, is NGC 5128 (Centaurus A). An example of the
group known as Seyfert galaxies is NGC 1275 (3084, Perseus A). Again we
have evidence of energetic electrons responsible for the radiation, but
how to connect this with the probable coexistence of energetic protons
and nuclei of higher charge is still an outstanding problem.45 These
and we wish to em~

radio galaxies are 2all of significant interest here,

phasize the similarities between their properties and those of the more
dramatic quasi-stellar objects.46’47
The explanation of thé redshifts of the '"quasars" is still the sub-
Jject of extended discussion.48m52 Terrell has been foremost in advancing
reasons51 for associating them with our Galaxy or with other nearby gal-
axies, mainly in order to reduce the energy requirements; but we are not
vet satisfied with the ideas being advancedsz for the redshifts in this
picture. Although we still prefer the cosmological distance interpreta-
tion and shall write in terms of it below, the quasars would still be
relevant to this discussion on the "local hypothesis." At least some of
the radiation from the compact cores of these objects probably must be
explained by a collective mechanism,53 greatly complicating the question

of what particle energies may be present. The theory for these objects




46-4 -
in general is still very difficult and uncertain, 8,54-56

but, in the
exceptional case of 3C273, we again encounter a most interesting optical
jet extending outward some 150,000 1ight-years57 and terminating in a

radio cloud.58 It may be treated to a large extent independently of the
more drastic conditions in the nucleus, and its interpretation in terms

of synchroton radiation seems to require57’59 electrons with energies as
high as 1012 eV in a magnetic field with strength of the order of 10_4
gauss. Thus, as in supernovae and radio galaxies, even the most conser-
vative interpretation involves highly energetic electrons and gives strong
reason to suspect the coexistence of heavy particles of even higher energy.
In particular, the quasi-stellar objects (or perhaps some or all radio gal-
axies as welleo) may provide a source for the highest-energy cosmic rays,5

which cannot be readily explained in local Galactic terms alone.

F. Laboratory Plasmas

These are on a vastly smaller scale, and are not directly within the
immediate purposes of this work. But we mention them here as another ex-

62
ample of originally unexpected high-energy particlessl’

which were ac-
celerated in a turbulent plasma in the presence of beam-plasma instability.
The explanation has been dealt with in a somewhat controversial article

by Stix. Stochastic cyclotron heating of electrons in a plasma contained
in a mirror machine by applied noise fields has also been experimentally

. . 64 .
investigated, with results in basic agreement with the accompanying

6
theory by Puri.

III. Plan of Study

There are several things which have seemed to us to be important in
understanding how these various acceleration phenomena occur and how they
may be related to each other, and which have called for further study.

First, there is the role of turbulence. Rather than tske on the
whole difficult problem of plasma turbulence,66 we have chosen to take
the following viewpoint: We feel that turbulence is present and is im-
portant somehow in natural particle acceleration; we study what effect

any given spectrum of turbulence could have; we try to make intelligent




guesses as to what general sort of spectrum might be reasonable and likely;
and we trust and hope that other work will be done which will follow an
appropriate plasma instability into its fully nonlinear regime and show
more precisely just what spectrum of turbulence should result. We must
also leave for separate investigation the effects upon the turbulence of
the loss of energy to the accelerated particles.

Second, there is the role of radiation. 1In all the cases above where
relativistic electrons are thought to be present, the principal means of
knowing of their existence is to observe their radiation in a magnetic
field. The loss of energy through radiation is, in turn, a strong and
important influence on the amount of energy the particles may have. This
subject has received some study,67 but is by no means exhausted.

Third, there is the relationship between the electrons and the heavy
particles. This has been the subject of important speculation,45’68’69
but we do not have precise answers to several questions: Are high-energy
electrons and nuclei always produced together? What are the relative num-
bers? What differences may there be in the type of energy spectrum? Do
the answers to these questions assist us in a clearer understanding of
the origin of cosmic rays?

We outline here the plan for the remainder of this work. 1In Chap-
ters 2 and 3 the turbulence of a plasma is idealized by a spectrum of un-
correlated waves and the associated electric and magnetic fields, which
will exhibit certain properties of randomness. We investigate by statis-
tical methods the effect these fields will have on a test particle subject
to them, and translate the results into the behavior of a large number of
particles subject to the fluctuating fields but uncorrelated with each
other. In Chapter 4, we present a brief summary of the effect of syn-
chrotron radiation upon a single particle and upon a distribution of par-
ticles with differing energies and other properties., Chapter 5 constitutes
the step from abstract theory to hopefully realistic prediction, in which
we consider how these processes might work in combination with each other
or with still different processes to determine the spectra of particles
to be found in nature. Finally, in Chapter 6 we compare these theoretical
considerations with some of the properties of the observed phenomena and
evaluate the extent to which this investigation has improved our under-
standing of the problems discussed in this opening chapter.

7



IV. Preview of Results

In order that the details of the calculations to follow should not
obscure the ideas being advanced, we give here a brief qualitative summary
of what is to be found. We shall conclude that randomly fluctuating elec-
tromagnetic fields may account for the production of high-energy particles
by the process of "stochastic acceleration," and that the most important
electric field components for this purpose are those transverse to the
average magnetic field and varying with a frequency which matches the
natural frequency of gyration of the particles being accelerated. Sto-
chastic acceleration is an average effect for a large number of particles,
when any one particle may either gain or lose energy in small increments;
it is equivalent to a generalized diffusion or "random walk" process in
energy.

Whenever there is a net average acceleration of particles there must
be a transfer of energy from some source, In Fermi's discussion of
cosmic ray acceleration, this source was provided by the interstellar
"clouds'; the interaction between particles and clouds was equivalent to
thermalizing collisions between two species of particles at different
temperatures in a gas, and because of the very great mass of the clouds
they had a high effective temperature and provided a source of energy
for acceleration of the cosmic ray particles. 1In this work, the source
of energy is taken to be plasma turbulence; in particular, we shall find
that low-frequency hydromagnetic turbulence seems most promising, so this
is similar to Fermi's description of the energy source in spite of the
greater abstractionm.

The plasma turbulence, in turn, must have its energy supplied by
some form of instability, which may be either strong and catastrophic or
weak and continuing.7o But this chain will not be traced in detail, for
it is the purpose of this work to take advantage of plasma turbulence as
an established fact whereby certain natural plasmas have a reservoir of

energy upon which the stochastic acceleration process may draw.




Chapter 2
RELATIVISTIC STOCHASTIC ACCELERATION: THE METHOD

I. Introduction

The need for consideration of the behavior of charged particles
under the influence of stochastic electromagnetic fields has been indi-
cated in the previous chapter. It has also been discussed briefly by
Sturrock in his exposition of the basic method to be presented here. In
that paper,71 hereinafter called "“SA,% the stochastic acceleration of non-
relativistic particles in fluctuating electric fields was studied in the
small-gyroradius limit, assuming that the fields were properly described
statistically as a stationary random process. It is important, in order
to apply this theory to solar flares and other more energetic astronomical
events, to extend the consideration of stochastic acceleration to rela-
tivistic energies and magnetic fields, which we shall now do. The present
chapter will be taken up in developing a general formalism, and in the
following chapter we shall consider some more or less tractable special
cases. (Parts of these two chapters have been presented in less detail
in a recent article.72) Spatial diffusion effects also result from this
general theory, but they are not our primary interest here and will be
de-emphasized.

More specifically, we shall now present two different approaches to
the stochastic acceleration problem, although both lead to the same re-
sults, Without implying complete equivalence to other contexts in which
the terms are used, we label these as the Fokker-Planck (FP) and quasi-
linear (QL) methods. The FP method was used throughout the greater part
of our work on this problem, and gives contact with certain previous

work, 71+ 73

but now tends to be more of historical interest since the QL
method has been found to add both simplicity and elegance to the calcula-
tions. Nevertheless, it seems useful to discuss both because of the unique
insights each can contribute and the differing shades of meaning they at-
tribute to the theory.

The presentation in this chapter will be very general, but probably
most clearly understood if it is kept in mind that we intend later to

specify that the fluctuating forces arise from electromagnetic fields.
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These in turn are to be thought of as aspects of turbulent modes of a
plasma, but this work will be limited to the use of the fields themselves,
leaving for separate study the problem of relating the electromagnetic
spectrum to the spectrum of plasma excitations which it represents. These
excitations must be sufficiently small ("weak" turbulence) that the condi-
tions on the fields for a perturbation theory, which will explicitly ap-
pear below, can be satisfied. There is another and nonequivalent sense

in which these excitations may be small; namely, that they be linear os-
cillations, so that each Fourier mode in the spectrum is independent and
does not interact with any other modes. This latter sense of smallness

is not of importance to our theory, for the spectrum function S(E¢n) is
still well defined and well behaved when the oscillations are nonlinear
(even though it no longer has such a simple intuitive meaning); all the
results will remain valid as long as the fluctuations are small in the

first sense.

II. Assumptions and Notation

The problem to be treated here is one of test particles; that is,

even though many particles are being considered in some sense, we will
ignore their effect upon one another as well as their reaction upon what-
ever source, external to them, may be providing the forces which determine
their motion. We may suggest three ways in which such a situation could
be of interest. First, this may simply be regarded as treating half of
the complete problem, with the other half--the dynamics of the external
sources--still to be done. This is the way in which this analysis could
be related to quasi-linear theory. Second, it may be proper to consider
the forces as undisturbed because they are actually being imposed by a
source with very high effective “impedance." Finally, the particles we
consider may actually be some special class of particles, many in number
but still only a very small fraction of all the particles present, so that
the spectrum of forces is determined and supplied by the background and

is indeed not much affected by the "“test distribution." A group of highly
suprathermal particles in a non-Maxwellian "tail" could provide such a

case.
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The other assumption defining the problem is the idealization of

the force fluctuations as a stationary, homogeneous, random field with

zero mean, which is completely defined as a statistical process by its
correlation functions of all orders. The results will be usable for non-
stationary, inhomogeneous field spectra if and when the time or length
characteristic of growth or damping is much greater than that character-
istic of self-correlation. Since the field fluctuations will be supposed
to have a finite correlation time they must, when formally Fourier-analyzed,
necessarily have a spectrum consisting of more than one mode of oscilla-
tion. There will be finite effective half-widths in frequency and wave-

number related to the effective self-correlation time and length by

‘*’szc =1, kL =1, (2.2.1)

and in these terms the conditions for quasi-stationary turbulence are

o, | <o [k, | <k (2.2.2)

%’ % !
where the damping rates wi and ki are evaluated at any real frequency
or wavenumber which makes a significant contribution to the spectrum.

Now we introduce the notation with which we shall solve this prob-
lem. First, let the particles be represented by a distribution function
F which gives their density in phase space, and let X“ (p = 1,2,...,6)
stand for any six orthogonal coordinates (usually three of position and
three of momentum) in this phase space. Then the total number of particles

N=fH (h ax ) F(Xu,t) ; (2.2.3)

the h are square roots of the elements of a diagonal metric tensor
—>
[(dX)“ = h dX ], and in Cartesian coordinates h =1 for all v. In

-
curvilinear coordinates, the action of the standard vector operator 'V

11



-
upon a scalar S and a 6-vector V is given by

VS—(radS)——l-aS YV = aivyel aff (2.2.4)
pe = \8 Lo h oXx pp VY TRSx \n e
HooH VR !
with
6
h=HhV
v=1

The usual summation convention for repeated subscripts may be used with
the understanding that the subscript on hv is not to be counted.

The equations of motion of a single particle situated at the point
XH at the time t will depend upon the fields of force to which the

particle is subject. We shall write these equations as

dXx

-E%= G“[Xv(t),t] + g“[XV(t),t] , (2.2.5)

where G“ includes the effects of whatever large-scale determinate field
may be present, and g“ is the contribution of the randomly fluctuating
fields. Solutions of this equation for g = 0 will be referred to as
"unperturbed orbits.™ *

Since it is our intention to deal exclusively with electromagnetic
forces, we may note here a property which simplifies several equations
below. It is well known that the momentum divergence of the Lorentz force,
vanishes (as it does for any force, such as gravitational, which is de-

rived from a potential). That is, the 3-vectors x and p satisfy

4, [dp) _ .2.
= () 0 (2.2.6a)

12




and

- -
the latter equality following because x and p are treated as indepen-

dent coordinates in phase space. Thus we will have

%355(_ (G ) =0 (2.2.7a)
[
and
la(hg)=o (2.2.7b)
h‘g}z }J. . oy

7
III. Fokker-Planck Approach74’ 5

There is one basic equation that lies at the foundation of the pres-
ent theory; this is the equation of continuity (or conservation of par-
ticles) in phase space. Although in later chapters we will include at
some points the effects of nuclear or other interactions capable of creat-
ing or annihilating particles, we write this equation now in the absence

of any sources or sinks:

F = [dX ] _F .10 dax
v + V - [E; ] = —; + E X [P —a% F] =0 . (2-3-1)

FP and QL represent different ways of working with this equation to find
the effects of a particular type of forces in (2.2.5), that is, different
stratagems for integrating (2.3.1) even though the forces acting are not
completely known.

FP is best understood as a multidimensional Lagrange expansion; we
may begin with equation (4.1) of Reference 75, translated into the present

notation:
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F(X R +At) = F(X :t) -
(o) g

=l I

d
Bx_“ [hF(XU,t) AX“(XO_,t,At)]

i o O :
+ EK'BEJ X [hF(XG,t) AXH(XUJt,AW) Axv<xc't9At)] T

12

(2.3.2)

This relates the change in F at the point X during a small time
c
interval At to the change in position AXH of a single particle start-
ing at X during this same interval, and in the limit of infinitesimal
g

At it of course reduces to (2.3.1). But for finite At the expression

At dx
&X (X ,t,0t) =f at' —E (X + &% (X ,t,t'),t+t'] (2.3.3)
(VI § 0 dt o) o o

must be used.
In order to circumvent the implicit nature of this equation and
make actual use of it, we must carry out a Taylor expansion of its in-

tegrand. Consider first the case gM = 0 and evaluate all quantities

at X ,t; then
g
. [ da oG 2
G At
= Jay e . 2,.3.4
AXH GOt + FEJ”GvS'ij i—Lz + (2.3.4)

The interval At must at this point be left free to take on any value
that may be required in treating gp when the latter becomes finite,

so the only satisfactory condition for this expansion will be

DG oG oG
—D%E—S{i+GV&&EO; (2-3-5)

v

it will also preclude any contribution to (2.3.4) by terms of third or

higher order in At. This is a restriction, not on G“, but on what
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systems of coordinates may be used. For a given G there may well be
several systems for which this is satisfied, and thzre is always at
least one (although it is not guaranteed to be familiar, attractive, or
convenient). To show this, consider again the particle at XU; this
particle may be followed both forward and backward in time as it traces
out its orbit in phase space. Likewise, a particle at another nearby

point traces out a nearby orbit; no two orbits may ever intersect (for

then Newtonian mechanics would be indeterminate), and every point of the
space has exactly one orbit passing through it. Then we have only to

construct a five-dimensional subspace orthogonal to this family of tra-

jectories. In that five-space, any coordinates at all may be used, for

they are only a parametrization, or labeling, of the orbits and the corre-

sponding G are zero, The sixth coordinate may then give distance along %
the orbits as proportional to the readings of a clock moving with the par-

ticles, so that G6 is nonzero but constant, and satisfies (2.3.5).

There must also be a restriction on F in order that (2.3.2) con-

verge:

At G“?YF<<F . (2.3.6)
0

An alternative view is that for a given F +the theory will succeed only
if all other requirements below can be met with a At small enough to
satisfy (2.3.6). The meaning of this should be clear; it is that no cal-
culated contribution to the change in F should be comparable to F it-
self.

Returning to (2.3.3), we calculate the contribution of gu by
Taylor-expanding about Xé(t+t') = X(I + Go(xc't)t' rather than about
xc itself:

g JAY ag t! "
OX°P = ' X' t+t') + X', t+t! f dat" X ,t+t") + ... .
[ e et ot e Lol e + g

(2.3.7)
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The fields gp are not known in detail, and equation (2.3.2) must be
averaged in order to obtain an answer in terms of their statistical prop-

erties alone., Since the fields have zero mean, (2.3.7) leads to

. At t! og 4
— J 1 1 H
éxp>-j(; dt j(; dat" gv(X(')_,tH:") &% (Xc,t+t )Y +o(g),

(2.3.8)
At At
<Ax§Ax§>=](; dt'vj; dtn <gp(x&,t+t') gv(xg_,t+t"> + 0(g4) ,
| (2.3.9)
<%XEAX§AX§> = 0(g4) , etc. (2.3.10)

Clearly, a perturbation~type calculation is being made with respect to
the strength of the fluctuating fields; we are finding terms of second
order to represent the lowest-order nontrivial effect, and are neglecting
all higher-order terms. The condition for doing this is also required if
(2.3.2) is to converge strongly, and is just like (2.3.6):

ot < F . (2.3.11)

g OF
B 3x
M

Finally, consider the meaning of (2.3.8) and (2.3.9). They depend
on the correlation between the values of g at two different points on
the same unperturbed orbit. A useful resuli can be obtained, independent
of the transient details of g“, only by requiring that At be much
larger than the typical self-correlation time TC of g“, as can be
seen from Fig. 1; for then one integration can be extended to infinity in
both directions with small relative error, and the other simply gives a
linear proportionality to At. This is precisely the behavior one must

have in order to use these quantities as "Fokker-Planck coefficients."

The form customarily used is obtained by dividing (2.3.2) by At; if

16




|
|
|
|
|
l
|
|
|
|
|

t

At

FIG. 1. REGION OF INTEGRATION OF g (t') gv(t")>.
Outside the shaded area, the integrand becomes
very small.

(2.3.6) is satisfied, AF/ﬁt may still be represented by BF/at, and

1
after using (2.3.4), (2.3.5) and (2.2.7) we have

AX AX AX
DF _ OF OF o~ 1 O v 1 d 0 b v
D—t=gt-+Gp.5Xp_-i1-5Xp hF<At +2_115x“3x— P\ "ot

(2.3.12)

This equation was the basis of our early work on the problem, but
it had certain disadvantages. The "diffusion" coefficient (2.3.9) is
generally readily calculable, for it is written entirely in terms of
quantities on the unperturbed orbit. But the "friction" coefficient
(2.3.8) makes use, in effect, of first-order orbit corrections. One con-

sequence of this is simply algebraic complication, which in principle is
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not disastrous; but in actual calculation for a special case, this com-
plication was of sufficient quantity that the appearance of the (1engthy)
final results did not cause us to realize the presence of an error at an
early step, and incorrect conclusions were actually drawn from these re-
sults76 (as shown in the next chapter, magnetic scattering is isotropic).
A second consequence was the appearance of some terms which seemed to
have an improper asymptotic dependence on At, so that they could not
be used as Fokker-Planck coefficients, This apparently limited the pos-
sibilities for complete solution to a few special cases (nonrelativistic,
no electric field, or small gyrofrequency); but as will be seen by follow- '
ing the QL method in the next section, this was because the algebraic
complication camouflaged the way in which the terms combine with one an-
other to eliminate these difficulties.

We must mention still another condition, which is easily overlooked.
In order to pass from a single-particle result to a statistical average,
it was implicitly assumed that each particle was subject to a different,
independent member of an ensemble of field representations. If this is
to be true, the average nearest-neighbor distance between test particles
should be large compared with the coherence length of the fluctuations.
Otherwise the particles would be, in Buneman's picturesque description,
"all rocking in the same boat" rather than diffusing independently. We
might try to circumvent this by averaging over a larger region of space
and so effectively defining a smoothed distribution function which would
properly obey our equations. But one should be rather cautious about
adopting this attitude, because if there are N particles close enough
to each other to be responding coherently to the fluctuations, they can
react upon the spectrum with a strength proportional to Nz. This par-

ticular point appears more clearly from FP than from QL.

7
IV. Quasi-Linear Approach 2

We now present a different mathematical technique for analyzing the
same problem, which removes some of the difficulties encountered with FP
and makes it possible to write concisely a more general solution than
formerly seemed possible. This derivation bears a strong similarity to

the quasi-linear theory of plasma disturbances, and in particular it
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approaches in some respects recent work of Shapiro77’7 and of Kennel
and Engelmann.79 But it differs in the representation of the fields,
and in the exact meaning to be attached to these fields and to the dis-
tribution function describing the particles.

We begin again with equation (2.3.1), which is exact. The function
F will develop in an irregular way under the influence of g“, and the
detailed fluctuations are not of interest. We need to find only some
expectation value of F 1in terms of the statistical properties of gp,
s0 we consider an ensemble of distribution functions, all beginning with
identical values at some time t = to. Let each of these functions be
subject to a different member of an ensemble of realizations of gp, i.e.,
fluctuating field histories which are independent of one another in de-
tail, but identical as to statistical averages. At any time t > to the
various functions F will differ from each other, and an equation is re-
quired for (F», the average of F over all members of the ensemble.
This is provided by taking the average of (2.3.1), using (2.2.5) and
(2.2.7):

)
D<Di>_=. <ai‘>+ Gp, §§XD= —%g}a?': <hgu813> ’ (2.4.1)

B

where OF = F - (F>. Then the difference between (2.3.1) and (2.4.1)

is

DSF 5§ F> QoF DOF
- - - ; .4,2
Dt g, X &, SxH NN BXH ’ (2.4.2)

the last two equations together contain all the information in (2.3.1).

[The use of (2.27) to move the derivative in some terms but not in others

is determined by the desire to write the final result in the form (2.4.7).]
We shall again use a perturbation method to solve these equations,

50 the key to the remainder of the analysis is the assumption of small-

amplitude fluctuations. Suppose gp is sufficiently small that there

exists a time scale T satisfying
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<FD , (2.4.3)

B

TC <K T L TF =

[Notice that these are the same conditions which were used before in
equation (2.3.11) and Fig. 1.] Then according to (2.4.2) the variation

BF generated by g|>L within » time T must remain much smaller than
<]?> , and the right-hand side of (2.4.2) may be approximated by its

first term. A higher approximation could be found by iteration. If we
know the characteristics of the Stokes operator D/Dt——the unperturbed
orbits--we may proceed to integrate (2.4.2) and substitute it into (2.4.1)

to obtain an equation involving averaged quantities only:

D<F(Xc,t)>

Dt -

=l L

t d¢FIX (t'),t")]
% <hgp(XU,t)f dt' gv[Xc'r(t'),t'] < UBXL >> + o(g?) .

t
0

(2.4.4)

Here t - to << TF and Xé(t') is that unperturbed orbit that passes
through XU at t' = t,

In order to be able to evaluate the last derivative in (2.4.4) at
XU rather than at Xé(t’), we should use natural coordinates suggested

by the problem itself such that
DG
= 2.4.5
—-E‘-Dt 0, ( )

as may be shown by a straightforward calculation of the difference between
the two derivatives. This means that the problem is best solved in co-
ordinates which are simply a parametrization of the unperturbed orbits,
as was discovered in the preceding section. Then the integro-differential

equation (2.4.4) is reduced to a pure differential equation:
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D{F(X ,t)) t OCF(X ,t)
—<——Dt—<f—_=%a% h éﬂ(x ,t)f dt' g [X'(t').t'> i—a}?——} + 0(g4)-
[0 o to ‘ o v

(2.4.6)

The lowest-order nontrivial result appears now as a diffusion equation

involving only second-order correlation functions of the field g“; it

may be written as

DSLF>
x vp[nw VV<F>] , (2.4.7)

Dt

where

t
Dw(xc,t)= huhv gp(xo_,t)f dt' g;[Xo'_(t'),t'] . (2.4.8)

—00

It is the requirement in (2.4.3) that t - to >> TC which allows
extension of the integration to =-» and makes Dpv a function of t
alone, eliminating any dependence upon initial conditions at to. Since
no correlation remains with conditions at to’ t may be taken as the
beginning of another integration, and (2.4.7) may be thought of as being
solved in this step-by-step manner to finally obtain <I?> at any time,
not limited from-above by (2.4.3).

We can now show the relation of this derivation (QL) to that in the
preceding section (FP). The derivative VvV, may be moved to the left in

equation (2.4.7) to obtain

D<Dz>gVHVV[Duv<F >1- 9.1, )CFD] . (2.4.9)
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By interchanging the dummy indices pu and v, it is easily shown that
the first term is determined entirely by the symmetric part of the dif-

fusion tensor,

D =%(D +D ), (2.4.10)

D =-§-(D -D ). (2.4.11)

In the presence of magnetic fields, we must not expect that DAV should
be zero, as it might otherwise be. With this information, (2.4.8) and
(2.4.9) may be compared with (2.3.8), (2.3.9), and (2.3.12) to see that
the results are expressed by formulae which are equivalent (except as
noted in the following paragraph) no matter which derivation is used,
even though a somewhat different meaning is attached to some of the sym-
bols during the course of QL as opposed to FP. We have already seen that
the same conditions upon the strength and coherence time of the fluctua-
tions are required in either case, but there also seem to be two differ-—
ences, First, FP makes the previously mentioned requirement on the
interparticle separation in terms of fluctuation coherence wavelength,
which apparently should still be of importance but is not made clear by
QL; and, second, QL seems to justify omission of the condition (2.3.6).
The one actual difference in the formulae is that the FP coefficients
include an additional averaging along unperturbed orbits of the QL coef-
ficients, This will be unimportant as long as the statistical properties

of the fluctuations remain fairly constant along each orbit,

D
5t <g“gv =0 ; (2.4.12)

but this is equivalent to (2.2.2), and will be satisfied whenever either

method can be used. Even insofar as the results are identical, the QL
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derivation is seen to have the advantage that it clearly shows an equa-
tion of generalized diffusion form, (2.4.7), with coefficients (2.4.8)
similar to (2.3.9) and so much easier to calculate than (2.3.8). In
order to show this same form with the FP formulae one must be clever
enough to rewrite (2.3.9), which is already explicitly symmetric, as the
symmetric part of a nonsymmetric tensor whose divergence will be (2.3.8),
thus making it apparent that the two terms can be combined. Equations

(2.4.7) and (2.4.8) will be basic to the next chapter,
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Chapter 3

RELATIVISTIC STOCHASTIC ACCELERATION: THE RESULTS

I. Terminology

The results of Chapter 2 will now be specifically applied to the
motion of test particles of charge ¢ and mass m in the electromag-
netic fields of a weakly turbulent plasma. The treatment is to be rela-
tivistically valid, so position and momentum will be used as independent
variables. The specification of fields implies the choice of a certain
frame of observation; if some other frame is to be used, the fields must
be Lorentz transformed. The physical content of the results must not
depend on which reference frame is used, even though the description of
the results may differ; what is seen by one observer as scattering may
appear to another as acceleration. The relativistic covariance of the
calculations will not be destroyed by the use of statigtical methods as
long as all averages are taken to be over ensembles.

Equations (2.2.5) will be the components in whatever coordinate sys-

tem is chosen of the familiar vector equations

d—> -
E’é: I-nP; , (3.1.1)
dp 1
- > - o d
d_fc’. = q[E(x,t) * o P X B(x,t)] , (3.1.2)

where the total momentum alone determines the function

7(p) =\/;_(;/‘m:)_2_. (3.1.3)

We write

25



for the electric and magnetic fields, respectively, corresponding to the
division between Gp and g, in (2.2.5). The conditions (2.4.3) are

fulfilled if typical magnitudes in the chosen frame of reference satisfy

GET, < p , GAB T, << myc . (3.1.4)

Note that for given field properties these conditions are more easily
met by the relativistic particles which will be our principal concern.
The notation for the second-order correlation functions of the field

fluctuations will be

Roa(£,7) = CaR G, t) a0, (e, e47) ) ; (3.1.5)

where P and Q stand separately for either E or B, and & and B
represent any directions in space. The assumption of a stationary, homog-
eneous process (as discussed in Chapter 2, Section II) is what makes this
ensemble average independent of the coordinates ; and t. We define

spectrum functions as Fourier transforms of these correlation functions:

Rg‘;@,f) = fd3k fda) ei(E.E - oT) sgg(i?,w) , (3.1.6)

sgg@,w) = (21\:)-4de§ fd'r e‘i(ﬁ'E - wT) Rgg('g’,'r) . (3.1.7)

These transform integrals, whereever they appear, will always be under-
stood to have limits - and +x without writing them explicitly.
Whenever a small-amplitude random-phase approximation is appropriate
("smallness in the second sense" of Chapter 2, Section I), the spectrum

functions will be related to the Fourier transforms of the fields them-

selves by

PQ 3 > , _ ~ X (o 1
%QLMB(LR)MWw)‘<%@w)%&'w)> (3.1.8)
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.
Faraday's Law supplies a relation between E and E which is

independent of their origin; in terms of Fourier components it is

> -
~ >

wﬁ(ﬁ,w) = cﬁ X E(k,w)

N
[2\]
[}
<o

g

From this would follow relations among the various Sgg. These could be

used to present all of the analysis in terms of electric fields alone (at

the expense of extra vector algebra), but we prefer not to do so at this

point for two reasons: We wish to show which field is responsible for

each effect found, and we wish to allow for consideration of low-velocity
-

modes where it would seem inappropriate to express B in terms of a much

-
smaller E,

II. Field-Free Plasma

- -
In order to discuss actual solutions, the fields E0 and Bo must

be specified, and the logical point of departure is

E =0, B =0 . (3.2.1)

We will briefly consider this simple case of an isotropic medium, even
though no use will be made of it in our applications. One reason for

this is to give the presentation some completeness; another is that it
allows us to illustrate certain points without becoming entangled with
others which will appear later.

The unperturbed orbits in this case are just straight lines,

-

;'(t) = vt , ;'(t) = myv = constant ; (3.2.2)

we lose no generality by taking the initial position of the particle in
question to be the origin of coordinates. The use of either spherical
or Cartesian coordinates would be quite appropriate (even cylindrical or
still other systems could be used); but let us choose Cartesian. Equa-

tion (3.1.1) involves only (constant) Gp's and the corresponding gp's
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are zero, and (3.1.2) has only gp's with no G“'s. This causes all
spatial derivatives to appear in the convective differential operator

D/Dt, and leaves diffusion in momentum-space only,

OF - OF d & OF
+v - ==2F=. (3.2.3)
St > 5 o

(F is to be understood throughout the remainder of this work as a statis-
tical expectation value, though the brackets < > used in the previous
chapter will now be omitted.)

The diffusion tensor is found straightforwardly by using (2.4.8),
(3.1.2), (3.1.5), and (3.2.2):

0
2 EE 1 EB 1 BE 1 BB
= T = = _
DOéB q f d [ROLB T 6575v7ROL6 * e €a75V7R85 + c2 eOL)'SeprVyvaBv] !

~co

(3.2.4)
where all the correlation functions have the same arguments (;T,T) and
the standard antisymmetric unit tensor €a57 has been used. This may

also be written in terms of the spectrum functions by using (3.1.6); the

first term, for example, becomes

0 0 SN
2 —~ 2 . e R
4 at Rop (VT,7) = g at [P [aw 2BV TOITEER 1)
o e =00 ap

2 3 EE g i
@ [ a% [ a0 PG |G ) - B E— |,
k'v-w
(3.2.5)
where 5( ) is the Dirac delta-function and P denotes Cauchy principal-
value integration. By changing the signs of the dummy variables E and
w and using the symmetry property (B.2) we may see that the delta-func-
tion contributes only to the symmetric part of the diffusion tensor and

the principal-value only to the antisymmetric part:
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3 [E EB
DS=nq2fdk[SE+% S 1 GBE 1 _BB]

€ v = € v — ¢ € vV

oB oR 876 ¥ ad + c 0175 ¥ 5[5 + CZ 0575 By ;LSBV

(3.2.6)
- -

with arguments S(E,k‘v), and

A . 2 3 - -1 [EE 1 EB 1 BE 1 BB

Pop = = 14 Pfdw f @k (kv -0) [SaB tC fpyeYy0 T e €a75v7855 ¥ &2 eo‘75€5wv7vu85\/]
(3.2.7)

with arguments S(K,w). Thus the diffusion of any particle is caused
by waves traveling at or near the velocity of that particle; that is,
the waves must appear at or near zero frequency to an observer moving
with the particle. Equation (B.4) confirms that st and DAV are
both real. g

As we remarked in Chapter 2, a further step one would eventually
take is to classify the wave modes that could be present (which would
be fairly simple in this case, but much worse in the following section)
and to relate the energy of each to its particular field amplitudes, so
that the diffusion tensor could be written explicitly in terms of these
wave mode energy densities. For the most general conditions at the dis-~-
tant boundaries the results would still be quite complicated, but if these
boundary conditions are isotropic or (more to the point) if they are ir-
relevant because the turbulence is a locally generated quasi-steady state,
then the wave spectra will have the same isotropy as the plasma itself.

The same must be true of the diffusion tensor, and its most general de-

pendence upon the momentum would appear in this case to be of the form

P, (3.2.8)

2 2
Dyg = Dl(p + Dz(p )P + Dy(p )6%7 »

80513 ap

with D, and D_ determined by (3.2.6) and D_ by (3.2.7). Here the

1 2 3
standard symmetric unit tensor (Kronecker symbol) Saﬁ has also been
introduced.

29




I1I. Uniformly Magnetized Plasma

-

The next simplest case is that where Eo and Bo are constant and
uniform, but Iﬁoi < |§o| and Eo'ﬁo = 0; the latter condition is often
a good approximation, for a highly conductive plasma cannot ordinarly
support any steady, large-scale electric field parallel to Eo' Once the
fields are assumed uniform and perpendicular, the smaller of them can
always be removed by a Lorentz transformation; since the electric field
is here being taken smaller, we shall suppose that we have already chosen
that frame of observation where E; = 0. Along with (3.1.4), it is now
also required that AB << Bo for the following analysis to be valid.

It is natural here to use either cylindrical or spherical coordinates
in momentum space, with polar axis in the direction of go = BOE. Each

particle may be characterized by a natural gyrofrequency and gyroradius,

Q= Qo/y = qBo/myc , rg = vl/Q ’

and it will prove convenient to introduce complex transverse coordinates

>
in position space, such that any vector A is defined to have components

(Some authors prefer a different definition; for futher properties see

Appendix A.) Then the unperturbed orbit of any particle may be written

Fi(at-g )
x,(t) = tir_ e ° (3.3.1)
z'(t) = vt (3.3.2)
Pi(t) =P, pn(t) = p” (3.3.3a)
p'(t)=p, e'(t) = o , (3.3.3b)
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and
pr(t) = g, - at; (3.3.4)

all quantities other than t on the right-hand sides of these equations
are constants of the motion. In this standard notation, ¢ is the azi-
muthal angle in momentum space and 6, the polar angle, is also the
pitch angle of the helical path followed by the particle. Again, the
assumed uniformity of field properties allows us to choose the origin

of spatial coordinates at the initial position of the guiding center of
the particle in question.

The coordinate ¢ is relatively uninteresting; it is true that it
must be used in (3.3.1) in order to properly evaluate the correlation
functions, but for the purpose of following the momentum-space diffusion,
the other two coordinates are more important if times t >> Q—l are
being considered. Thus in a Chew-Goldberger-Low type approximation (dis-
cussed at greater length by Kennel and Engelmann79), we limit our atten-
tion to F, the phase-independent part of F. The lowest-order equaticn
obtained by averaging (2.4.7) has the same form, but the subscripts now

range only from 1 to 5, F 1is replaced by F, and Dpv becomes

27
" j(; dg Dw

Accompanying the elimination of the cyclic coordinate ¢ is a dis-

[\ I [
A
—~
w
(]
(914
~——

interest in the fluctuating part of x in favor of following only the

"
guiding center motion. This change mu;t be made, in fact, to satisfy
(2.4.5). Actually, we define a pseudo-guiding center (which never differs
at any time from the true guiding center by more than a small fraction of
a gyroradius) of the projected motion in the x~y plane by using only the
unperturbed field;

Xo, = X ¥ v+/iQ . (3.3.86)
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The equation of motion for this variable is

dx dp

&+t _ 1 A+
at ~ my P+ T 10 Tat (3.3.7a)
v
c Ml +
- —— - — 3.3.7b
5 OFE, +g5 OB, -5 4B, ( )
o o o
and for the others we have
dz
£L 3.3.8
at = ( )
and
dp .
1 iQ
—_— — 3.3.9
at qAEt + B p” ABG ’ ( )
o
dp .
” i
= qAE - = p AB 3.3.10
= = GAE B_ P OB, ( )
or
9P _ g (si 3.3.11
dt—q(sm 8 AE_ + cos eAEz) , (3. )
de _ (cos B _ sin © 10 g 3.3.12
dt—q<p LB ¢ p AEz+Bo ) ° (3.3.12)
Here abbreviations have been introduced for the quantities
1[ -ip ip 1[ -ip i ]
= - = - - B .
AEt z[e AE+ + e AE_] , ABe z[e AB+ e "AB_
(3.3.13)
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It may be remarked here that both parts of (3.3.7) serve a purpose;
(3.3.7a) assures that (8/5xg+)(dxg+/dt) = 0, but since it involves the
coordinate @ it cannot be used as a G [as can (3.3.8)] to put all
spatial variation into the convective derivative DF/Dt. Rather, (3.3.7b)
must be used as a g to calculate a position space diffusion. Then

equation (2.4.7) takes the form

Eoy, L VM[BWVVF] , (3.3.14)

with p and v now enumerating only the four variables xg+ and x
(or xg and yg) and p_L and p (or p and e).

It may be seen from (3.3.7b) and (3.3.9) through (3.3.13) that the
calculation of the diffusion coefficients of (3.3.14) involves in every
case one of a certain family of integrals which are evaluated in Appendix
C, so that we have only to put in proper values for subscripts, parameters,
and multiplicative constants to obtain complete formulae for pr. Con-
sider first the momentum-space diffusion alone (the spatial diffusion will

be taken up in Section VII). This depends on the three field combinations

AE AEt and AI%, and so on the nine quantities

Z
27 t -
= a2 %;L ap <AEz[x,t] '/-:oo dt'AEz[x'(t').t']>

q2 fdskfda) z J:(klrg) Siz(ﬁ,w)nﬁ(kllv" +nQ -w) ,

(3.3.15)

il

= _1 2 3 2 EE -2ip _EE 2ig EE]
1—\tt T4 q fd k_/‘dw z {2Jn+1 S+- * Jn—1Jn+1 [e S++ te S--
n

né(k”v” + 00 - w) , (3.3.16)
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Pee - 4p2 fd k fdo Toe1 Se- 7 In1?na (© Spe v e --
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ﬂ&(k“V” + nf) - Cl)) ’ ) (3.3.17)
T =T = .3.18
T e=Tey =0, (3.3.18)
T =T = 3.3.19
er 0z 0, ( )

¥ - iq0p [,3 / z 2 BE_ 2 _BE [e-21(p GBE _ 219 SBE]}
Pte 4B° kJ & Jn--ls+— Jn+ls- +Jn-1Jn+1 ++ -
n

ot

i
kv + na )

ﬂa(kHv” +nQ-w)tP (3.3.20)

The same arguments apply to the Bessel and spectrum functions throughout,
and ¢ 1is the azimuthal angle in k-space.

Straightforward use of either the cylindrical or the spherical co-
ordinate system gives two sets of four B;v's which are linear combina-
tions of the Tpv's' These are exhibited in Appendix D; unfortunately,
they do not make the physical meaning of the process very clear. But
by allowing simultaneous use of both coordinate systems, we find that

when everything is written out the relations

9 S d
and
p§=p 9 + p”§ (3.3.21b)

1 BPL P‘
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may be used to manipulate the result into the very suggestive form

DFy _ 9 |g OF|,2 O ¥ QF|, 1 O |gin ¢ T F
(50) =3y |TeaSop| "oy 3 [P Tee 3o | T T e %0 36
35'1 zt O | ", O, |°L tz&] Ep_” 26 p O

+ —Li 0 sin 8 T BF —l- 3 P T l OF
p sin 8 kX ez BSH P, S_I 1l " tep L)

b —1 9 sin 9 T F | (3.3.22)
p sin B 39 6t 5_— : cT

-

Here each partial derivative retains the meaning it would normally have
in the standard coordinate systems. This is the same in some respects

as if © were formally an independent coordinate along with p_L and

p”, with TLV playing the role of a diffusion tensor in this artifi-
cially three-dimensional momentum space, and makes it clearer than would
(3.3.9)-(3.3.12) that the three fields AE_, AE , eand OB, are uniquely

)

bound to producing changes in p,, pi, and 6, respectively.

il
Again, as in Section II, we“may remark that this solution will in
general depend on boundary conditions. But if the fluctuation spectrum
is locally generated, its statistical properties will have the same gyro-
tropic symmetry as the background plasma; the consequences of this are
given in Appendix B. All integrations over the azimuthal angle ¢ in
k-space may then be carried out on the basis of this symmetry alone; in
the particular case of (3.3.15)-(3.3.20), this does not in itself cause

any terms to vanish.

IV. Parallel and Cyclotron Acceleration

The next three sections are devoted to the elucidation of the re-
sults in Section III by the study of several special limits. As the first

case, let us consider the effect of fluctuating electric fields alone as
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was done in SA. Then Fzz and Ftt are the nonvanishing quantities
whose meaning is to be interpreted. First of all, a constant or asymp-
totic solution F independent of P, and pll cannot be allowed in the
global sense because it is not normalizable. The next best way to under-
stand the characteristics of these terms is to inquire into the existence

of a self-similar solution. If T ” and Ftt are constant, the problem
z

reduces to a simple diffusion equation and there is indeed such a solu-

tion,

Pl P2
_“ - : (3.4.1)

40 t o t
zZ tt

E ~ t—3/2 exp | -

This has the appearance of a Maxwellian distribution for which the tem-
perature is increasing linearly with time, but of course it is actually
cut off much more strongly than a true Maxwellian at high energies, be-
cause for relativistic particle of energy W = 7mc2 this varies as e
rather than e_w. We may already conclude from this that (a) it is per-
fectly normal that the particles receive a net flow of energy from the
field fluctuations, but (b) this can be of interest for generating rela-
tivistic particles only if there is some way of making the effective
value of [' increase with energy.

Suppose next that a spectrum is considered for which the wave num-

bers of the most important waves satisfy k r << 1 for the particles

L'g
of interest. Then the predominant part of the coefficients will be

= 2 3. _EE,»
- .4.2
Fzz ndq fd k Szz(k,k“VH) (3 4 )
and
= 1 2./' 3 _EE,» (3.4.3)
T -»= d'k S (k - .
tt 2 ™ +-( ’kHv” 2)
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In this limit there are clearly two independent effects: acceleration
by the electric fields parallel to Eo at zero frequency (as seen by

an observer moving with the particle), and acceleration by the trans-
verse fields at cyclotron resonance. The second of these processes has
a distinct advantage over the first for the acceleration of relativistic
particles, for fzz depends mainly upon pitch angle whereas the varia-

tion of  with energy can cause ft to increase with energy if, as

is quite reasonable by inference fromtturbulence in ordinary fluids, we
should have a spectrum function which decreases toward higher frequencies.
On the other hand, the simultaneous small-gyroradius and non-relativistic
limit makes Ftt independent of pl; then we recover (2.26) and (3.20)
of SA, the consequences of which have already been discussed there.

For a2 given wave spectrum with its maximum important ki’ there is

(assuming relativistic particles again now) a characteristic particle

energy

= — (3.4.4)

above which kirg Z 1. We suggest that this will superimpose more or
less of a cutoff on the I' that the wave spectrum would otherwise give

above this energy. To see this consider the identity

Z Ji(x) =1, (3.4.5)

n

which states that a constant total weight of unity is being assigned by
the summation in (3.3.15) or the first term of (3.3.16) regardless of
the size of k,r , but redistributed to different parts of the spectrum.

L'e
In the most usual circumstance of a spectrum which falls off in frequency,
this transfer of weight from lower to higher harmonics will decrease T
even though the total frequency range being spanned by the larger number

of harmonics may remain about the same in the relativistic case,
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We may also use

z 3 (x5 (x) =0 (3.4.6)

n

in the same way to suggest that the terms in which this combination of
Bessel functions appears will never attain much relative importance for
any value of klrg' except as a result of some unusual or peculiar form
for the spectra. This increases the probability that insights gained
from consideration of the small-gyroradius limit will remain more or less
generally true.

This is an appropriate place to comment on the connection of our
work to that of Puri,65 He has used a different mathematical method to
investigate fluctuations in the time domain alone; that is, in the strong
limit where both klrg << 1 and kHvTC << 1. This simplifies the anal-
ysis in that the departure of a particle from its original orbit does not

alter the field strength acting upon it. In our notation one could write

s(¥,0) = 83(K) o(w) , (3.4.7)

and immediately perform all k-integrations to obtain

= 2

' - ma" o(0) , (3.4.8)
ZzZ

= 12

Ty~ 3m™ o), . (3.4.9)

etc. But Puri has been able to show, under appropriate assumptions about

gstatistical properties, that such formulae can remain valid for arbitrary
field amplitudes.
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V. Magnetic Scattering

The second special case of momentum space diffusion is complementary
. s . 72

: to the first. As was pointed out elsewhere, Faraday's Law may be used

to write the ratio of magnetic and electric forces from a Fourier-analyzed

disturbance as

v x~§1 _ v x ®xE) . (3.5.1)
c|E| w|E|

This indicates that the electric aspect of the wave is more important for

|

i

f : all purely longitudinal waves and for all transverse waves with phase

| velocity (w/k) >> v, so that the approximation of the previous section
! would be appropriate. But the magnetic field will be more important for

most transverse waves with Qn/k)<< v, and the treatment of the present

{ section may be applied to find their effect. Hydromagnetic waves acting

f upon relativistic particles would be an example of this case. (The cri-
terion as roughly described here would depend on the frame of observation

| being used; discussion of this point is given in an unpublished report.7 )

A purely magnetic field cannot change the energy of a particle so the

effect of magnetic fluctuations alone, when their associated electric in-
duction fields may be neglected, is limited to the scattering in pitch

\- angle described by (3.3.17). This too is a cyclotron-resonance effect;

its simple form for k,r << 1 is

\ lg
: — 22 (3 BB~
T »"—Q—Lfdks (k,k v - Q) . (3.5.2)
00 ,p2 +=
O

y Just as with the cyclotron acceleration, a higher-energy relativistic
particle can resonate with a lower-frequency (and so likely stronger) wave,
This may partially or wholly offset the explicit factor Qz ~ 7—2 and en-
hance the likelihood that this magnetic scattering will become relatively
more important, as particle energy is increased, than Coulomb scattering

from individual background particles.
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To be more specific, magnetic fluctuations of typical relative ampli-
-n
tude O = AB/BO, coherence time TC’ and spectrum falling off as w
above T; will cause scattering through an angle of order unity in a

time

~ '\I———-—-—_-C
T ~ P Pee 55 . (3.5.3)

For comparison, the time for substantial deflection by Coulomb scatter-

ing, with account taken of the relativistic correction to the Rutherford

. 81
cross section, is about

m203 3 2
T ~ B ¥

Cou 2 2
1n
16nq qon0 A

(3.5.4)

where B = v/c and the density no, charge qo and 1n A pertain to

the background plasma. Magnetic scattering will be the more important

process if

2 n
Ty 16xan 1In A[l + (axg) ]
T 2_2
Cou cd BoBaTC

<1. (3.5.5)

If we suppose the background particles to be singly charged, and 1ln A ~ 20,
this becomes

n
mB 1+ (QT./7)
104679522 - o C , (3.5.6)
° p QoTC
or for sufficiently relativistic particles
(AB)ZTC > 10728 n_ . (3.5.7)
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This last condition would be satisfied virtually anywhere, and rep-
resents such an extreme as to be uninteresting. For a practical test
one must use (3.5.6); this equation may be interpreted graphically as in
Fig. 2, which is drawn for the case n = 2, In a particular physical
problem involving a particular species one generally knows n, no, and

B (and thus Q
o o}

qBo/mc), so the scales are determined for all three

2 2
variables, 9, T and (kinetic) energy E = W - mc” = (y-1)mc”. For

c)

given values of & and T the graph then determines a minimum energy

C!
above which magnetic scattering may be important, but below which it gives

way to Coulomb scattering. Conversely, given some energy E and time

TC’ the graph determines a minimum amplitude ® above which magnetic

scattering dominates for particles of this energy; or, given values of

® and E, one may find what values of T if any, will accomplish

Cl
this.
Consider the example of scattering of energetic protons in the inter-

stallar medium. This is important to the isotropy of cosmic rays as well

38,39
as to some attempts to explain their acceleration (Fermi traps 3 ).

3

- -6
Using n0 ~ 1 cm and B° ~ 5 X 10 gauss, the approximate locations

of 8=1 (line P) and T, = 1 sec (1ine Q) are found. We also note
at the top the time scales given by the background self-collision fre-
quency, v—l ~ 104 sec, and by the transit time of hydromagnetic waves
over the scale of the known inhomogeneity represented by the H II "clouds,"

L/VA ~ 1 1igh‘cyeza|r/10—4'5 c ~ 1012 sec. Then take for illustration the

. - 10
point R, for which 5 = 10 1 and TC = 10" sec = 300 yr. If such
fluctuations are present, they will scatter protons more strongly than
will Coulomb collisions for all energies above 1 MeV, and a scattering

. L7
time T _ ~ 1011 sec ~ 104 yr will apply up to a maximum energy of about

1018 eV, i.e., essentially for all cosmic rays. Similarly, reasonable
parameters can lead to the expectation of magnetic scattefing on an in-
teresting scale for electrons participating in Type 1V solar radio bursts,
for "golar cosmic rays" in the interplanetary medium, or for energetic
particles in distant objects such as supernova remnantg, radio galaxies,
and quasars. We shall consider in succeeding chapters what effect this

may have, in combination with other processes, in determining natural

energetic-particle spectra.
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One case among those mentioned that has already attracted extensive
study is that of the interplanetary medium. The importance of magnetic
scattering in the diffusive propagation of energetic particles through
the solar wind has been recognized for some time,82 and this case is also
exceptional in that space probe techniques offer the possibility of direct
observation of both particles and fields. Coleman has recently reported
a study of such measurements on the magnetic field by Mariner 2. These
show a power spectrum of magnetic fluctuations varying with frequency
over the measured range 1.5 min < (Znﬁb) < 8 hr in a way that may be
represented roughly by SBB ~ w-n, with n 1 for the low and medium
frequencies in this range but increasing to perhaps n ~ 2 for the higher
frequencies.83 On the theoretical side, the prospect of using these mea-
surements to build a more detailed picture of the energetic-particle propa-
gation has led to the replacement of Parker's simple model of a single
scattering84 by the more general treatment of Jokipii.85 When differences
in notation are removed, the latter's results are equivalent to those that
would be obtained from our more general theory in the limit of a zero-fre-

quency spectrum,
sk,w) = ' (k) 8() . (3.5.8)

We conclude this section by pointing out that, insofar as the ideal-
ization of purely magnetic fluctuations is realized, the scattering they

cause must be isotropic. This is a consequence only of reducing (3.3.22)

to
5 N [ - X
= = i T 3.5.9
ot p2 sin @ 55 e e o9 56 ’ ( :
with no other requirement being made of TGG except that

= =20JF
Py I\ -
sin @ 60 F 55 0
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at the limits @ = 0, . The proof consists of defining the quantities

1
— 1 —
F_(p,t) = —f do sing F(p,0,t) , (3.5.10)
av 2 o
' - = 2
I(p,t) = —f do sin 9 (F - F )", (3.5.11)
2 0 av

and then computing

&1

d1 n - = 1 9 = OF
j(;de (F—Fav)-p—zye[sinel"eeye]

2

. _
= - —12—f de sin o Fee <%—g> . (3.5.12)
p- Jo

Since FGO is positive [remember that it is just twice the Fokker-Planck
coefficient <(Ae)2/At> ], I(p,t) must be monotonically decreasing
(possibly at a different rate for different p) toward the lower bound

I = 0 corresponding to af/ae = 0. Thus the only well-behaved asymp-
totic solution under the influence of this process alone is that for
which the distribution function becomes isotropic in momentum space.

This statement is slightly stronger and more accurate than the brief
converse argument used by Jokipii,85 who noted that 5?/59 = 0 describes
a stationary solution and concluded that this requires the two Fokker-

Planck terms to combine into the form (3.5.9).

VI. Magnetic Pumping

We give now an example in which the magnetic and electric aspects
of a particular type of wave are both taken into account together; some
of the ideas in this section have been published in brief~communication
form.86 The concept of magnetic pumping is simple and familiar to many

plasma physicists; as a practical means of heating particles, it is
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generally presented in terms of a coherent applied magnetic field whose
energy may be absorbed because of a finite collision frequency.87 Here
we use the term "stochastic maghetic pumping" to discuss situations where
the frequency of collisions between particles is very small but where
energy may still be transferred from pumping-type fields to particles
because these are taken to be the random fields associated with the tur-
bulence spectrum of a nonthermal plasma. Small but finite gyroradii
must be used to find this effect, and the method differs from that of
the preceding sections in that the model pumping waves used cannot be
analyzed into statistically independent plane waves. Thus the inter-
action of particles with low-frequency transverse fields which will be

found here is not in contradiction to the comments following (3.4.3),

j which apply to plane waves.

f Consider a spectrum of magnetic compressional waves for which the

\ convergence of field lines is more important than their curvature, and

| which are idealized in cylindrical geometry so that they resemble moving
magnetic mirrors. Then a Taylor expansion of the change in longitudinal
magnetic field (the "amount of squeezing") about the symmetry axis con-

tains only even powers of the radius:

ABZ(x+,x_,z,t) = Bzo(z,t) + Bzz(z,t)x+X_ L (3.6.1)

The use of low-order terms in this series will give a "paraxial" approxi-
mation. The corresponding expansion for the transverse magnetic field
will have odd powers of the radius, and by requiring the field to have

zero divergence we can easily relate it to the longitudinal field:

OB
aBzO z2 2

1 1
AB+(x+,x_,z,t) = -3, X, T3S, KXo T e (3.6.2)

Likewise, the transverse electric field can be found from Faraday's Law

to be
OB OB
i z0 i z2 2
AE+(X+,x_,z,t),= T %6 TSt %+ T 48 TSt XX .. . (3.6.3)
45



But the longitudinal electric field is undetermined--it depends upon
what currents may be flowing along the magnetic field lines--so we shall
leave it as an independent quantity for the moment and later discuss
what its nature is likely to be. But we do suppose it to be expanded
in powers of the radius as was done in (3.6.1).

For particles moving near the axis of the fields just described,

the lowest-order part (in gyroradius) of (3.3.9) and (3.3.10) will be

dpl Py ) 3

_dF=§3:<§+ v gz‘) Bzo(z,t) , (3.6.4)
o) 2,

= = @_.(z,t) - o —~= (z,t) . (3.6.5)

When the Fourier transforms are used, the derivatives acting on Bzo
will be replaced by multiplicative factors, and the spectrum functions
will be evaluated at o = kHvH. But (3.6.4) will have the factor

w - k”vH, which will cause its contributions to vanish~-that is, we

have in the first order the expected result that

p2
ho= 2mé (3.6.6)
Z
is an adiabatic invariant. Thus (3,3.22) reduces in this case to
DF d JF
- = .6.7
(Dt) Sp,\ (0, + T, +P3)gp_— (3.6.7)
PP | |
with
2 2 BB
I = x dk; ky S_- (kg ,k (3.6.8)
= w6 fa o sy
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T‘z = nqz fdkH Sgg(kH,kad) , (3.6.9)

T, = 2ni(qp./7)fdkH k” Siz(kH,k”vH) . (3.6.10)

Suppose first that Ez is zero so that only Fl need be considered.
Then the action of the magnetic field gradient of these waves upon the
magnetic moment of the particles can result in a stochastic acceleration
parallel to B0 much the same as for longitudinal electric fields, but
with a different efficiency as a function of wavelength. The factor vy
makes Fl decrease as p“ increases, opposite to what would be needed
to make this seem important for the acceleration of relativistic parti-
cles. We might imagine p_L kept comparable to p“ with a scattering
process—--some other waves, for instance--so that p could be increasing
in proportion to 72 instead of remaining constant, and we could have
Pl ~ 72. But this still has the drawback of low over-all efficiency
(compared to low-energy particles subject to the same waves ) because the
Alfven speed VA is usually much smaller than that of light, and only
a fraction of order VA/c of an isotropic distribution of relativistic
particles would be able to satisfy the condition vy ~ VA and interact
with these waves. ’

The waves considered here suggest a connection with some recent
work of Barnes88 and Tidman.89 Barnes used the method of SA to find
an acceleration of particles by certain magnetohydrodynamic waves (closely
related but not identical to our cylindrical waves) and to confirm the
damping rate of these waves which he had earlier predicted from the warm-
plasma dispersion relation.90 What is of most interest here is his point
that (nonrelativistic) electrons are better able than ions to respond to
a transient push away from a mirror, so that a charge separation and a
field Ez will accompany the magnetic fluctuation at the same frequency
and wavelength, Barnes estimated that the effects of the electric and

magnetic fields would be comparable for thermal particles. Then since

B  increases with particle energy while q does not, we have reason to
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beleive that, for our own interest in suprathermal particles, Tl is
the dominant term in (3.6.7).

Tidman also calculated a damping rate for MHD waves, but in his
case it is due to gyroresonant, rather than zero-frequency, interaction
of waves with a pre-existing suprathermal distribution of particles;
thus it really has more to do with Section IV of this chapter than the
present section. He estimated that the presence of the cosmic rays
would cause appreciable damping of MHD waves in the interstellar medium,
but that this was not an important input mechanism for the total energy
balance of the particles.

Both of these approaches serve to suggest another condition which
should be kept in mind: If some group of waves (of any kind) is to be
considered as a source of acceleration of highly suprathermal particles,
these waves should be incapable of accelerating the thermal background,
i.e., incapable of dumping their energy into unwanted heating instead
of carefully "reserving" it all for preferential acceleration of the
special class of particles that already have higher than thermal energy.
This again suggests that gyroresonant interactions will be better can-
didates for affecting relativistic particles than zero-frequency inter-
actions, because they have a built-in "selection rule": Waves with low
wavenumber and frequency w < {§ will be more or less limited to inter-
acting exclusively with particles for which ¢ ~ Qﬁb.

We should comment on the discrepancy between (3.6.7) and the results
we obtained elsewhere86 by the method of SA, although the difference has
little effect upon the conclusions drawn in either place. Our present

derivation (QL or "enlightened" FP) apparently yields a Fokker-Planck

coefficient

Apl
=) =0, (3.6.11)

where we formerly gave a finite result. We believe that the explanation
is that the FP approach is not capable (when followed blindly) of recog-
nizing adiabatic invariants when they exist. It is true that the inter-

action initially tends to decrease pl on the average, but because of
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the adiabatic invariance this stops as soon as the particle reaches the
nearest wave trough rather than continuing indefinitely. This is not so
much a real difference between the two methods as it is a fortuitous cir-
cumstance that QL should agree with the adiabatic invariant when FP
does not, for neither method is strictly applicable; the values of a co-
ordinate controlled by an adiabatic invariant cannot really undergo a
random walk such as these methods are intended to describe. There was

a difference in that the present approach automatically bypassed the cal-
culation and subsequent neglect of many gyroresonant terms, which were of
doubtful consistency with the desired approximations anyhow. This is a
concrete example of our remarks in Chapter 2 to the effect that QL both

simplifies analysis and avoids errors in comparison with FP.

VII. Spatial Diffusion

Emphasis in the preceding sections has been focused upon the changes
in momentum resulting from fluctuating fields, and this will be done again
after this section, but we will record a few formulae here showing how
drifts in position space naturally arise out of the same theory. (More
or less similar results for spatial diffusion have been found by others;
see, for example, Mouthaan.gl) Considering now the strictly spatial terms
on the right-hand side of (3.3.14), we may use (3.3.7b) [in exactly the
same way that (3.3.9)-(3.3.13) were used in the remainder of that section]

to calculate four real quantities:

— -2 [ 3 2 2[ 2 EE 2 BB BE EB]
= - S
Dl Re[D+_] Bo fd " fda) {Jn [c S+_ + VHS+_ + icv“S+_ ich -
n

2.2 BB

+ viJn+1 zz}n‘a(k”v” + 100 -w) ,

(3.7.1)
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= o -2 [3 o[ 2EE 2BB _ . BE . _ EB
D2 = Im [D+_] = BO fd k fd(jj Z {Jn[ (&) S+_ V“S+_ 1CVI|S+— + 1CVHS+_]
n

+ V2J2 BB 1
L n+1"zz k”VH +nQ -w '
(3.7.2)

o= -2 3 2(_ 1 Z(EE EE)
D, = Re[D, ] = B fd kfdwz {Jn[ Sc (s, + 5.
n

L L V2(31313 N SEE) D R (SBE + sEB _ gBE _ SEB)]
2 [ \Par ++ [

- -2 3 211 2/ _EE EE
Dy = Im[D++] - Bo fd kjdw z {Jn[z ¢ (S++ - S—-)

n

; Z(SBB _ Slflf)

EB BE EB)
2 ++ -- ==

+ L icv <SBE + S + S + S
AP ++

2 .. BB . _
- vJ_Jn-lJn+1 1 sin 29 szz} lﬂa(kHvH * ng w)

(3.7.4)

Again, the arguments are Jn(kl?g) and S(E,w) throughout. In these

terms we will have

(@ 3Pt 3 [P~ P3 5F 5 |Pa " P2 oF d IPa* P oF
R Bt - - R n o e N
XX g g g g g g g g

(3.7.5)
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which allows anisotropic diffusion. Whenever cylindrically symmetric
field spectra are being considered, the ¢ integration will annihilate
D and D4, and if in addition the spectra are spatially homogeneous

3
(3.7.5) will reduce to the simple form

DF 1 2=
(Dt) 2 DlvlF ’
Xx

In the case of electric fields alone (as in Section IV), the limit

for kLrg << 1 of the important coefficient D1 becomes

2

D “’-&fd3k S (%, kv, ) . (3.7.6)

172 =R
o

Notice that it is determined by a different part of the spectrum than is

- —- -

T in (3.4.3); this spatial diffusion is just the result of AE X BO

tt
drift. In the case of magnetic fields (Section V),

D - X d3k [Vz SBB(I{:anu) + V2 SBB(K,k|V1 - Q).l ;
2 zZz Ml i

1 5 L +=" 1

° (3.7.7)

gyroresonant pumping and the following of displaced field lines both con-
tribute here to spatial diffusion. The transport of particles by this
method in a plasma of very low collision frequency can greatly enhance
such transport coefficients as viscosity and heat conductivity in direc-
tions perpendicular to the magnetic field. Tsuda has considered the
application of these ideas to some problems of momentum and energy trans-
port in the Earth's magnetosphere and ionosphere.

Finally, (3.3.14) contains mixed terms involving both position and
momentum derivatives. They could be written out in the same way as were
(3.3.22) and (3.7.5) and their coefficients, but we shall not do so here.

In the cylindrically symmetric case which is of most interest to us these
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terms all vanish, leaving diffusions in position and in momentum which

are independent of one another,

VIII. Nonuniform Conditions

The relatively simple idealized cases for the choice of steady
fields G have already been exhausted by our consideration in Section
I1 of Eo = Eo = 0 and in Section III of Eo = 0, Eo = constant., It
is not within the scope of this work to treat further cases in any de-
tail, but we may comment briefly on what such a study might involve.

There are two other cases of constant and uniform fields possible:
Eo = constant, Eo = 0, and E; and go both constant and parallel to
one another. These cases would both involve ordered runaway accelerar
tion93’94 and its chain of consequences, and before undertaking the task
of calculating statistical effects in their presence, one would consider
carefully whether the fluctuation phenomena are likely to have any im-
portant role in comparison to the runaway. The transition from linear
to parabolic type unperturbed orbits would make the evaluation of Fourier
integrals much more difficult, probably requiring the use of Airy func-
tions or something comparable.

The difficulties of considering nonuniform background fields will
be evident to one who has followed the mathematics of Section III and
Appendix C in detail. Equation (2.4.5) certainly suggests that adiabatic
invariants and their conjugate phase variables would be used as coordir
nates whenever they exist. Birmingham, Northrop, and Félthammar have
been working on such a theory for particles in the Earth's magnetic field,
which will refine present ideas about stochastic acceleration by violation

95
of the so-called third invariant in certain geomagnetic disturbances.
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Chapter 4

SYNCHROTRON RADIATION

I. The Emitted Radiation

A charged particle moving in a magnetic field must, as a result of
its continual centripetal acceleration, radiate energy in the form of
electromagnetic waves. This is commonly called cyclotron radiation (for
nonrelativistic particles), synchrotron radiation (relativistic), or (usu-
ally in the Russian literature) magnetobremsstrahlung; and it must be
taken into account if the possibility of stochastic acceleration in astro-
physics is to be considered. The basic theory of this radiation has been
established for over fifty years,96 and it has recently been the subject
of a thorough review from the point of view of astrophysical applications.9
We shall merely note in this section a few of its principal properties
which will be of use to us later, as given in the review mentioned or in
a typical textbook.98

The total power radiated by a particle of mass m, charge ¢, and

total energy W = 7mc2, moving with pitch angle 6, in a uniform mag-

netic field of strength B, is

4 2

P = 39% sinZ o (72 -1) . (4.1.1)
3m ¢

2 2
The last factor is equivalent to By , showing how this power becomes
small for nonrelativistic motion; in that case the radiation is concen-
trated at the cyclotron frequency QO = qB/mc and is of dipole type.

But we shall be interested almost exclusively in the ultrarelativistic
case, for which many harmonics come into play and give a practically con-

tinuous spectrum extending up to frequencies of order

. 2
w, = sin e ¥ Qo
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This spectrum for single-particle radiation varies approximately as

w1/3

Fig. 14.11 (Ref. 98, p. 487). In spatial distribution, this radiation

below W, and as exp(-Zw/awc) above, as pictured in Jackson's

falls off exponentially for angles farther away from the cone of direc-

tions traced out by the velocity vector than

[e]
R |+~

The radiation has in general an elliptical polarization, with the prin-
cipal electric vector at right angles to the projection of the magnetic
field on a plane perpendicular to the observer's line of sight, as illus-
trated in Ginzburg and Syrovatskii's Fig. 5 (Ref. 97, p. 308). The degree
of polarization averaged over all emission angles increases from 1/2 at
low frequencies to 1 at high frequencies; further details are abundant in
Reference 97.

Figures 3 and 4 present graphs which we have found convenient for
quick reference on the properties of single-particle synchrotron radia-
tion. Using W and Bl = B sin § {for axes (1ogarithmica11y scaled),
we can plot sets of straight lines representing constant values of other
quantities. Lines of slope +1 may be labeled with either the gyrofre-
quency { = Qo/y or the gyroradius rg = c/Q and those of slope —1/2

represent the characteristic frequency

v = 0.43((1)(:/21:)
at which the greatest radiation occurs. Lines of constant total power
(slope —1) are omitted in favor of those with slope -2 representing the
characteristic time T = W/P in which the particle would lose one-half

of its original energy. Although in some kinematic respects (such as

or rg) electrons and protons have similar properties when both are ultra-

relativistic, this is decidely untrue of their radiation. For a given
-4

energy the radiated power P still depends upon the rest mass as m ,

4 -3
7T as m , and wc as m ; this is the difference between the two

graphs. There are two extra cautionary lines on each graph above which
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FIG. 3. SYNCHROTRON RADIATION BY ELECTRONS.

this information should be regarded only as a rough estimate: at line D
the radiation damping is becoming important in determining the particle's
motion, and at line Q the energy of a single photon at the most likely
frequency exceeds the particle's original energy, so it must already have
become important before this to use quantum mechanics instead of classi-
cal radiation theory. We shall not become involved in this last question,

but an interesting review of its possibilities has recently appeared.
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FIG. 4. SYNCHROTRON RADIATION BY PROTONS.

On the assumption that there is no process locking the phases of
different particles together and causing them to radiate coherently, the
radiation from a large number of particles with different energies may
be found simply by integrating their individual intensities. This has
the well-known result that a distribution N(W) = K W-n of particle

1
energies in a source will produce an observed radiation spectrum which

is described by a power law also:
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1(v) oy %, (4.1.2)

n
]
|-
)
=]
1
—
s
b
Hh
o]
Vv
Wl

Each frequency Vv 1is contributed mainly by those particles for which
Vm =~ vy, The integrated polarization becomes linear, in the direction

already described, with strength

H= ——7-nn++713 (4.1.3)

which varies from 1/2 to 1 as n increases from 1/3 to oo,

If this is further integrated along a line of sight where the direc-
tion of the magnetic field is not everywhere the same, the degree of po-
larization will be reduced, going of course to zero in the limit where
all directions of field are equally likely. If N(W) = Kl w o continues
to hold for various pitch angles and positions in space, then (4.1.2) re-
mains true; any variation of Kl will not matter unless there is such a
great anisotropy that the distribution function changes appreciably over
a very small angle of the order of 7_

As described above, a synchrotron spectrum can never increase with
frequency faster than vl/s, but there are processes that can alter this.
Synchrotron radiation can be self-absorbed if it passes through a region
containing other energet%c particles; for optically thick sources this
can result in I(v) « vs/2 at low frequencies.97 Another complication
is the refractive index of the ambient plasma, which has a characteristic
frequency vp = (nez/ﬂm)%; for frequencieslog Sv this will influence
the radiation process. Hornby and Williams have considered these and
other possible explanations of observed low-frequency cutoffs in the radio

spectra of several extragalactic radio sources.

1I. Effect of Radiation Loss on Particles

More attention has generally been given to the radiation itself than
to its reaction upon the radiating particles, but this too is a straight-
forward problem soluble in principle, and it is of prime interest to us
here. Dirac's theory of relativistic classical point electrons has (see

Ref. 98, p. 609) the equation of motion
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(4.2.1)

(4.2.2)

=F + F
a7 H H
under the external forces FeXt, where the radiative reaction is given
by
2 d2 d d
Frad _ 29 pp _ pEr ( Py pv)
- 3 2 2 T T
H 3mc dt mzc d d
>
Here p is the particle's four-momentum (W,p), T

r
and we wish to calculate F ad

ext

F“ ., Then we may use the unperturbed solution

pp = (w, p, cos at, p; sin Qt, pn)

and dt = »dT to calculate in the frame of observation that

o) 2q%? P
T 35 2 2 '
d 3m c m c 7
and
rad 2
4_2
P _2B” L P

dt - 35 229y °

3m ¢ mc

The fourth component, dwrad/dt, reproduces (4.1.1).
Let us define

58

its proper time,

as a small self-generated correction to

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)



. -9 -2
for electrons this is equal to 1.8 X 10 sec 1 gauss . Then we may

either write the effect of the radiation damping upon the distrubution

function
2 2 2
2 p p F p, py)F
(%) - CB_ 0 1+ zlz | + cB? aa 212 1 (4.2.7)
rad Py 9Py me /) 7 p“ mc 7

or transform to total momentum and pitch angle to obtain

2 2 2
OF CB” sin” § O 3 CB S 9
(5? rad - p2 5; [yp F] + y sin @ kY [sin® 9 cos 0 F] . (4.2.8)

A set of stationary, separable solutions to this equation can easily be
written:
|x

F~— ; Ip £OS el ) (4.2.9)
yp sin @ cos 6 | 4

Locally, these are valid for any value of x, but from the global view-
point they are somewhat pathological functions: First, they are not nor-
malizable, always giving a logarithmic divergence at 6 = 0 regardless
of the value of x, but this might be expected physically since the par-
ticle pitch angles are always being decreased by the radiation. Second,
to avoid a nonphysical divergence at 0 = n/2 we would require x > O,
and if an nth derivative is to be defined at © = n/2 this would be
further limited to x = 1,2,...,n or x> n-1. Finally, there must be
a source of particles at p = = to support such a solution everywhere,.
Our interest will be primarily in the ultrarelativistic limit where

(4.2.8) reduces to

2 .2
@—f) S e 99 () (14 o, 7)] (4.2.10)
rad mc p
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which shows that in this limit it is a good approximation to assume that
all particles merely lose energy according to (4.1.1) without any change

in their pitch angles. A stationary solution, from either (4.2.9) or
(4.2.10), would be F ~ p_4 (times any reasonable function of 6). This
would correspond to n = 2, s = 1/2 in (4.1.2), but we should not hastily
conclude that observed spectral indices will exhibit any tendency to have

the value 0.5.

III. Dynamic Radiation Spectra

The general solution of (4.2.10) can in fact be written explicitly,
4
since it contains only first derivatives; the quantity p F remains con-

stant along the characteristics

dp _ _ 1,2 a6 _
3t Lp” , =0 (4.3.1)
where
2 2
L=9_§_51£__e.’ (4.3.2)
mc

so that an initial distribution Fo(p,e,o) will become at any later time

F(p: e,t)

-4 P -1
(1 - Lpt) Fo<1 el 9, 0) (pt <L ™)

=0 (pt > L °1)

(4.3.3)

Of particular interest would be the class of particle spectra which can
be written as the product of one function of p alone with another func-
tion of pt alone, and this is just the class of initially power-law

distributions. Using n in the same sense as in (4.1.2), these are

F (p,0,t) = A(e) (1 - Lpt)" "2 p P72 (pt <17Y) . (4.3.4)

60




For a given t and reasonable values of n, the original spectrum is
for practical purposes unchanged except within the last decade of p be-
fore the cutoff at 1/Lt. Then the radiation spectrum from particles of
a given pitch angle will also be stationary and as given by (4.1.2) up

to within the last decade before

) 2 . 59 23
v (G,t) = 3§_§%£§§G%;> = 792 ; 3 = 2é83X 103 for electrons.
¢ 2qm c 8tqg t B sin @ t B sin @

{4.3.5)

Above vc(e,t) the spectrum will fall off exponentially, and jhst below
its behavior will depend on n; qualitatively it is a smoothed replica

of the particle spectrum (4.3.2), as shown in Fig. 5, and quantitatively
there are available exact formulae (such as Ref., 97, equation 3.20) from

which these falloffs could be calculated accurately, but that is not im-

portant to us here.

A
LOG1

V. (6,t)xt™%sin"38 LOG vV

FIG. 5. RADIATION SPECTRUM FROM UNDISTURBED PARTICLES AT
A SINGLE PITCH ANGLE.

\
We are now in a position to show an interesting result, apparently

due to Kardashev,67 which has been used recently by Kellermann to
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propose an explanation for the distribution of spectral indices of ob-
served radio sources. In neither of these places was it clear to our
satisfaction just how this result was found, or what were the conditions
for its validity, so its derivation will be given briefly here. We must
assume (i) that an isotropic power-law spectrum of particles is injected
uniformly throughout a certain region of space at the time t = O; (ii)
that the strength B of the magnetic field is nearly constant in this
region, yet at the same time that the direction of this field changes
sufficiently from one part to another so that the radiation received by
an external observer will constitute a sampling taken equally from all
pitch angles; and (iii) that there is no other process taking place which
could significantly change the pitch angle for any of the particles over
any time scale to be discussed here. We shall not ask whether these
rather stringent conditions are met in any real object until a later
chapter; for now we only ask what their consequences would be.

The spectrum seen by the observer under these conditions will be

(] bid
2 "
1(v,t) =f p dpf sin ¢ do F_(p,0,t) E(p,8,v) , (4.3.8)
0 0
where F_ is given by (4.3.4) with A independent of 6, and

2
H(p,9,v) € B sin @ J(v/vc) , vc(e,p) = Bp sin @8 ,

a___
Zﬁmsc3

(4.3.7)

describes the intensity contributed by a single particle at p,80. J(x)
is a known function proportional to xl/3 and exp(—2x/3) for small

and large x respectively, as described in the first section of this

chapter. Thus

n 1/Lt 0 . he2
I(v,t) @ Bf de f dp sin“ 9 p (1 - Lpt) J(v/vc) ,
0 0

(4.3.8)
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where the angular integral must be written first because the momentum
cutoff l/Lt depends on 6. Now we take advantage of the nature of J
by making x = v/vc instead of p the independent variable for the sec-

ond integration:

7 0 _ )
I(V,’C) o8 Bf de sin2 ef g_: [D(X;G,V,B)]l n (1 - Lpt)n 2 3(x)
0 v/v (8,t)
(4.3.9)
or
I(v,t) « B‘/z(n+1)v-y2(n_1) fﬂ de sin'/a(n+3)9 fw dax J(x)x'/g(n—3)[1 _ \/ﬂn—z .
, 0 v/vc(e,t) xvc(e,ti
(4.3.10)
Now (4.3.5) states that
1 .3 1
vc(e.t) = Vc(E T, t)/SIn ] 2 VC(E T, t) , (4.3.11)

so for small frequencies the lower limit of the x integration is always
much less than one, and in fact it can be approximately set to zero for
evaluation of the factors J(x) x%(n_3) if [1/3 + (n—3/2] > -1, or

n > 1/3. In order that the final factor may be approximated by unity we

must have n > 1, and this makes it possible to write

< (l t>°
v <<v iz 1 :

1(v,t) @ B'/z(n+1)v-'/2(n—1) f’f a6 Sin'/z(n+3)e ‘/0'°°dx J(X)Xyz,(n—B) ,
0

(4.3.12)

where the integrals are now functions of n only--the entire dependence
on time (noue) and frequency is explicitly shown. As could easily have

been guessed, this is no different than the low-frequency part of Fig. 5.
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But for high frequencies there are a few particles with sufficiently
small pitch angles that the exponential cutoff has not yet affected their
radiation. This may best be calculated by interchanging the order of

integration:

%t © 0 min{Y% x, arcsin(xvc/v)l/s]
f def dx=f dxf de
0 VSinse/v © 0
c
(4.3.13)

Since only values x <1 are important, for high frequencies the second
upper limit on 6 will prevail. In order to bring the dependence on V
out of the 1limit of integration we define z = (v/vcx)l 3 sin 9, which
finally leads to

1
y > vc<2 L& t).

n+5
1 6
1(v,t) « p{n+1)/2 =(n-1)/2 M fw ax 3(x)x2(n"1)/3 fl dz z(n+3)/2(1_za/2)n—2 .
v 0 ()

(4.3.14)

This approximation also requires n > 1, actually for the same reason,
so that the z integration will converge. The result, as sketched in

Fig. 6, is again a power-law radiation spectrum, but with an index

% s +1 (4.3.15)

Shigh = 3 "low

and an intensity decreasing in time as

(4.3.186)

-2
which must be faster than t ~. These are the results stated by
67
Kardashev, Again, we have equations with which the exact shape of the

kink could be calculated if there were need for it.

64




iy .

Egﬁ

R

it

< bssig

1
LOG I gt
2
FIG. 6. THE SPECTRUM OF FIG. 4 AVERAGED OVER AN ISOTROPIC

DISTRIBUTION OF RADIATING PARTICLES.

IV. Continuous Injection of Energetic Particles

There is one final extension of these results which involves no other

processes in an explicit way. Suppose that, rather than a single burst

of energetic particles as studied in Section III, there is a continuous

injection of energetic particles so that (4.2.10) is generalized to

E_ LB 2 o)+ alpest) (4.4.1)

p P

The source function Q must represent "sudden!" injection, either from a
different region of space, or from a fast acceleration process, or from
the sudden appearance of new particles from nuclear reactions, etc.; the
point is that this does not include any continuous acceleration process

which proceeds so slowly that it must compete with radiation loss to get

the particles up to the energy of "injection." The latter case will be

dealt with in the next chapter.
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A general solution to (4.4.1) may be written by integrating (4.3.3)
over all times previous to t. It is convenient to change the origin

so that t = 0 now stands for the present time, and we obtain

+ Lpt

0
F(p,B,O) =f dt (1 + Lpt)-4 Q(l———p——-— s e;t> . (4-4.2)
1

Lp

In particular, if Q is constant in time the variable of integration may

be changed from t to p' = p/(1+Lpt), which gives

F(p,9) = —lzf dp' p'2 Q(p',9) . (4.4.3)
Lp  “p

This would also have been obtained directly by asking for a stationary
solution of (4.4.1).

-(n +2)
Finally, if we should have a power-law Q = A(e)p ° this would
become
—(no+3)
A
F(p,0) « (ﬁgp > (n >1) (4.4.4)
o ?
B sin @

indicating that the radiation loss steepens the injected spectrum by one

power. Since there is no cutoff involved here, the dependence on @ does

not matter and the radiation spectrum is given by

%(n -2) =4n
i(v)as ° v ©°. (4.4.5)

For no <1 it is necessary that Q have a cutoff at some D
we would have F(p,e) ~ p-4
%,

4

x; then
up to a sharp cutoff at p__ ., and I(v) ~

v at low frequencies with a turnover somewhat like that in Fig. 6.

This would depend on A(e) now, but the subject will not be pursued here

since values of no this low are unlikely to concern us anyhow,
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Equation (4.4.5) is involved along with (4.3.12) in the Kellermann

1 and (4.4.3) has been used by followers of Alfven to discuss

proposal,
102

radiation from the electron debris of proton-antiproton annihilation.

67






Chapter 5

MODELS OF COMBINED EFFECTS

I. Introduction

We should clearly state here a point which will be basic for this
and the following chapter: The phenomena involved in this study extend
over a wide range, usually a number of decades, in such independent vari-
ables as particle energy and radiation frequency. When these variables
are considered on logarithmic scales, even a complicated equation de-
scribing many effects will usually reduce in certain subranges to a bal-
ance between two dominant terms. Insofar as we can consider effects one
pair at a time and avoid the problem of joining these regions, the analysis
will certainly be simpler. But these transitions from one region or pair
of terms to another are ordinarily smooth, and take place within roughly
one decade, so that an attempt to get very general solutions including
three or four effects at once will seldom be justified by anything that
can be learned from them. That is, observational data are usually not of
sufficient accuracy for meaningful detailed comparison with any prediction
within such a small range.

We shall also sometimes make use of "model terms." This means that a
term known to describe an effect correctly may sometimes prove inconve-
nient to use, and we may substitute for it some other expression which
is more tractable for solution, but which we have reason to believe will
retain those essential characteristics of the original expression that are

most important to the final result.

II. Scattering and Radiation

As the first example, consider the effect on a spatially uniform
particle distribution of simultaneous radiation loss (in an average field
B) and scattering (by magnetic fluctuations or otherwise). Rather than
to study transient effects, it is easier to assume a continuous isotropic
power-law injection of particles and then to study the steady-state solu-

tion of the equation
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2 2 -(n +2)
OF 1 ) [ . OF CB” sin“ g O [ 4 o
e = ———— IN —_— — —————— e .
St - 2 . .o °" % g ae]'+ me 25 [PFl+ap
p sin © p P

(5.2.1)

Here C is the constant given by (4.2.6), and A is the same quantity

appearing in (4.4.4) but is now being assumed constant. given by

1-\ 1
00
(3.3.17), may depend on 8 and (perhaps only weakly) on p, but it

will be possible to draw some conclusions by only using a typical magni-

tude of Pee as if it were constant. (The notation F, I' served its
purpose in Chapter 3, and the bars will not be used below.)

Equation (4.1.1) shows that the power radiated by a particle with
parameters p and @ will be appreciably altered by changes of order
Ap~p and AB~ sin §, and an estimate must be made as to which of these

changes is more likely to take place. But from (5.2.1) we may write

Tr
1 . _6e 1 1 CBz p2 sin2 9
2 ’
Tscatt p 036)2 Trad me op

(5.2.2)

so these terms will be of comparable importance along an "influence bound-

ary" given by

T 2 2
ee o~ CB2 p sin @

2
= Kp sin” g (5.2.3)
2 2
p sin © mep
1
| or
|
3 4 3
p- sin @ *T /K =p_ (5.2.4)

We have indicated in Fig. 7 how the radiation dominates the particle tra-

Jjectories in phase space for sufficiently large p, where the solution
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FIG, 7. SCHEMATIC PARTICLE TRAJECTORIES WITH RADIATION
AND SCATTERING.

must be given by (4.4.4), and how scattering will keep the distribution

function isotropic for small p even though the particles continue to

radiate with an effective value

replacing sin’ o in (4.1.1).
A similar conclusion may be drawn more rigorously by applying the

operator
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N

1
f de p2 sin @
0

to (5.2.1) (with SF/at = 0). The presence of any nonzero prevents

r
00

singularities in F as a function of §, so there is no question that

sin 9 Pee(aF/ae) -0 at @ = O0,n: the remaining expression is completely

independent of Fee:

o | 4
3 [P

N
=

b -n
f de sin3 o F(p,0)| +=p °_o. (5.2.5)
0

For no > 1 we may integrate over p and obtain

-(n +3)
1 [T 3 A °
5 f do sin” o F(p,9) = T L——_l , (5.2.6)
0 no

which is clearly a generalization of (4.4.4). From this it may be seen
that wherever F 1is isotropic (as for p << po) its dependence on p

is determined as well, and in fact the replacement sin2 e 2/3 is also
correct in (4.4.4). This provides sufficient information to investigate
the spectrum of radiation which would come from this distribution,

Figure 7 also indicates how the frequencies of maximum radiation of

the particles near the influence boundary are predominantly quite close

to the value

2/3

(5.2.7)

0.43 qB'1/3 (Pee>

1
Vo T Vm<po’ 2 ﬂ) T 2g (mc)7/3 C

The radiation at high frequencies (v >> v_) will be determined almost
entirely by particles with p3 sin4 g >> P> for which
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-(no+3)

(p,0) = (noél)K E;inz — (5.2.8)

Fhigh

and the radiation at v << Vo will come mainly from particles with

p << po, for which

-(no+3)

Flow(p,e) = (nofl)K P*2/3 . (5.2.9)

These may be used in (4.3.6), with the same transformations which led

before to (4.3.12), to find that

=% n_ =)n
Ihigh(v) =c¢ Vv ’ Lowl¥) =3V ’ (5.2.10)

where the ratio of the two constant coefficients may readily be calculated:

\

%no
de sin 5] 2(no+4)

ﬂ win +4)  3(n +2) °
. o] [
de sin (%]

g
=

(o]
(5.2.11)

1
o

S [

njeo

As n varies from its minimum allowed value of one to a maximum of
infinity, this ratio varies only from 10/9 to 2/3, and in fact the
most reasonable values of n (perhaps 1.5 to 2.5) give values for this
ratio (22/21 to 26/27) which are quite close to unity. We see no
reason to expect anything other than smooth joining of these nearly iden-
tical solutions in the region around Vo’ so we must conclude that the

addition of scattering in pitch angle cannot be expected to cause any
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noticeable feature in the radiation spectrum of particles being contin-
uously injected according to an isotropic power law (nor, probably, for

any other reasonably similar injection spectrum).

III. Stochastic Acceleration and Radiation

We proceed to consider the behavior of the distribution function
under the influence of statistical acceleration (nonzero Ptt and Pzz’
as indicated qualitatively in Chapter 3, Section IV), but now with radia-
tion loss also being taken into account. It proves unsatisfactory to
begin straightforwardly with terms from (3.3.22) and (4.2.10), for the
radiation and diffusion terms are in different coordinate systems and
are not related to one another in form in such a way as to make the com-
bination readily integrable. Instead, tractable 'model terms" may be
formed by supposing that strong scattering is present also and assuming
that this keeps the distribution isotropic. Then we may use (D.5) and
(4.2.10), operate with

N

T
f de sin 9 ,
0

and obtain

0 o | 2 OF
5 ——3'55 (p'F] + 15'5; [P Deff 5;] ’ (5.3.1)

3p p

where the effective value of Dpp (from Appendix D) is given by

i 3 2
= = T i T . 5.3.2
Deff 2]; de[sin e £t + sin 9 cos 6 zz] ( )
If Ftt and Pzz are isotropic, D_.. becomes 2/3 Ptt +1/3 Fzz'

In order to investigate stationary solutions, we set BF/at = 0,

whereupon one integration may be immediately performed:
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For a physically acceptable Deff which is strongly cut off above some
(perhaps very high, but finite) energy, F must also approach zero very
rapidly for p ~ © and the constant in (5.3.3) must be zero. Then the

second integration is also easily done, yielding

2 P p2g
F(p) = F(0) exp|- -é-Kj(') De?%;y . (5.3.4)

The significance of this expression may be seen from the following ex-

amples. First, in any region of p where Deff is constant,
3
F(p) ~ exp|- (p/p )" | ;

this represents roughly a steepening by the radiation of the spectrum
(3.4.1). Second, for Fermi's acceleration mechanism Deff ~ p and
2
F(p) ~ exp[— {p/p,) ] .

In both of these cases there is a characteristic momentum p0 [equal to
(9D/2K)1/3 and (3D/pK)1/2, respectively] which plays the role of an
influence boundary between diffusion and radiation terms, or a barrier
beyond which particles cannot readily diffuse. Likewise in both these
cases the radiation spectrum would be determined entirely by particles
with p = po, and its shape would be approximately that for single-par-
ticle radiation; thus neither case would satisfactorily explain a typical
observed power-law radiation spectrum as the result of a steady-state
combination of stochastic acceleration and radiation loss,

Third, the form of diffusion coefficient which can account for a
power-law spectrum of particles (and so of radiation also) is clearly
and the resulting spectrum exponent is

3
D ~
eff P
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D , (5.3.5)

but this n must be greater than two. As was.pointed out in Chapter 3,
the relativistic variation of gyrofrequency with energy may make such a
Deff possible, but there would still be two weaknesses in such a model.
First, the larger the range in p over which F is to vary as p-n

’
the more critical it is that the exponent of p be very close to three.
Second, this is subject to the same objection as the original Fermi
model, that the exponent n is determined by a ratio of two apparently
unrelated quantities; then the observation of values of n quite similar
to one another and all of the order of unity must be interpreted either
as accidental or as the result of a deeper relationship which remains to
be elucidated.

Finally, for Deff ~ pm with any m > 3 the formula (5.3.4) breaks
down, giving an essential singularity for p - 0 and an unnormalizable
flat spectrum for p — ., This means that in order to consider such a
case one would have to explicitly take into account the eventual dropoff
of Deff for large p.

IV, Loss of Particles

An effect which has not been taken into account in any of the dis-
cussion above is the loss of energetic particles from the system in
question. This might represent inelastic collisions (nuclear or elemen-
tary-particle interactions) in which one of the particles represented by
the distribution function F suddenly loses an appreciable fraction of
its energy or even disappears (with particles of some other kind appear-
ing instead); or it might be the result of particles escaping from a
finite region of space in which they were generated. These pictures
were involved, separately, in Fermi's two principal papers on cosmic-ray
theory;38'39 but a more general treatment than his will be given here.
We shall continue in this section to suppose that there is sufficient
scattering to keep the distribution function isotropic, so that only its

dependence on total momentum p (or energy) must be considered.
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The first case we shall take up is that of the loss of particles
which are being stochastically accelerated. If a(p) represents the
probability per unit time that a particle of momentum p will be lost,

the equation representing these two processes is

§£=L2_5- [pzn E’F]_om ) (5.4.1)
p

The general steady-state solution of this equation cannot readily be writ-
ten, and only a very limited investigation will be made here, Suppose
that all the functions in this equation are approximated by power laws

over some range of momenta:

m m' -(n+2)
= b ~
Deff P , (07 ap ’ F P .

(5.4.2)

A steady state requires that the exponents have the values

m''=m-~-2, m=mn+1 - —EZE— , (5.4.3)

so that the relative importance of D with respect to & must in-
e

oo

il
crease strongly with p to support the particle distribution in this

state. For given m, n>m - 1 and increases with a/b, which demon-
strates the expected steepening of the distribution function by the loss
term. Further comments must depend on consideration of what values of
m and m' are within reason.

If a radiation term [as in (5.3.1)] is added to (5.4.1), the above

procedure is limited to the case m = 3, for which

K v/ K 2 a
= — '——-2 '—>2. X,
n=p* (3b ) *p2 (5.4.4)

In the limit a - 0 this agrees with, and slightly clarifies, equation

(5.3.5).
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For the contrasting case of loss of "injected" particles, the func-
tion CX(p) may be generalized to a(p,T), the probability per unit
time that a particle of momentum p and age T since injection will be
lost. If only the injection and loss terms are taken into account the
problem is trivial, so radiation will also be included now. In either
of two limits this case may be solved explicitly. First, consider
a(p,T) - a(T), where the probability of loss depends only upon age; this
description may apply when the loss represents escape from a finite re-
gion of space and may be approximately characterized by a transit time

from point of injection to boundary. Then the steady-state solution is

00 (p',p)
F(p) = —ELZ J; dp' p'2 Q(p') |1 - JE ooP at' aft')| ; (5.4.5)

2Kp

its derivation is omitted because it is a straightforward generalization
of (4.4.3). The new quantity in brackets is simply the probability of

survival of a particle for the time
311 1
T(p"p) =—[—-——] (554'6)

in which the injection momentum p' would decrease to p under the in-
fluence of the radiation loss. In particular, it might be supposed that
the escape process is approximated by assigning the same lifetime Tb to

every particle; this would make a(T) = S(T-To) and

p

_3 % o2 (e 4
F(p) 2Kp4fp dp' p'" Q(p") (5.4.7)

with

= . .4.8
P =71 - 2KpT_/3 (5.4.8)
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Such a model was used by Ekspong, Yamdagni, and Bonnevier in the latter
. 102 ) .

part of their article to investigate the effect of particle loss upon

the spectra they had previously calculated on the basis of (4.4.3), as

noted at the end of Chapter 4.
In the opposite limit where a(p,T) - Q(p), the equation

o 2k O

4
= — [p°F] + Q - oF (5.4.9)
3t 3p2§p
has the steady-state solution
glp) po
3 2 -g(p’
F(p) = = f dp' p'“ e g(p ) (o) (5.4.10)
2Kp p

where

2K

P
g(p) = if ' p' 2 alp') . (5.4.11)

The meaning of this result may be clarified by writing instead the local

effective value of the energy spectrum exponent,

3
__pdF _, __ _30p) p- Q(p)
neff(p) ="Fap 22" Toxp T e [ 2 a(o")
e f dap' p'" e Qp")
P

(5.4.12)

The middle term shows that a<p) tends to decrease neff’ and has the

simple interpretation that each particle removed is one which would other-
wise contribute to the spectrum at immediately lower energies, so that

the spectrum must be flattened by this loss at the value of p where it
occurs., But the last term shows the opposite effect of increasing neff

along with a(p), because if the flux of particles from higher energies
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is cut down then the local injection Q(p), which is a steepening in-
fluence, will become relatively more important. Thus no general state-
ment can be made about how loss of particles according to afp) will
influence the shape of the spectrum. Study of (5.4.5) shows that the
same is true of loss according to a(r).

The only circumstance in which (5.4.12) will yield an actual power-
law spectrum (neff independent of p) is when a(p) = ap, as was the
case with (5.4.4). But this dependence is exactly such that its only

effect is a decrease in the magnitude of F by a factor

n -1

o
n -1+ (3a/2K) '’

with the exponent retaining the value n £f = n0 + 1 which it would have
e

in the absence of loss, as shown by (4.4.4).

V. Transients, Total Energies, and Ratios

This section contains brief comments on a few miscellaneous topics.
First, there is the question of time-dependent spectra, since the pre-
ceding sections have emphasized the description of steady states. The
qualitative answer follows from inspection of the various terms used in
equations (4.4.1), (5.3.1), and (5.4.1). An increase in the rate of in-
Jjection Q(p) or a decrease in the loss rate a(p) will clearly allow
F(p) to increase in time toward some higher equilibrium value, but the
effect of the other two terms is slightly more complicated. In the nor-
mal case for which F is decreasing and concave upward as a function of

P, an increase in (p) will tend to increase F in time, but an

D
eff
increase in BD/ap will make F decrease in time at a given p; this

must not be confused with the effect of D on the total energy of all
particles, as shown below. The effect of a departure of BF/Bp from
what would be an equilibrium value is not uniquely connected to BF/Bt,
for it enters in opposite ways into the radiation and acceleration terms.
A "young" increasing spectrum could be overly steep where acceleration

dominates, the steepness itself enhancing the relative importance of the
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acceleration; or it could be overly flat under the predominant influence
of radiation, the increase in time at a given p being due to the down-
ward flux in energy of an excess of higher-energy particles, Some numer-
ical calculations of transient spectra are included in Kellermann's
article;101 they demonstrate various effects of radiation upon particles
which are injected in repeated bursts, all of which have been dealt with
at least qualitatively in this and the preceding chapter.

Another quantity which may sometimes be of interest is the total

kinetic energy density contained in all particles with energies above

some given value. This is defined by

e(> po) = fde dp p2 (7-1)mc2 F(p) , (5.5.1)

Po

and if attention is limited to the relativistic region po >> mc and

to an isotropic distribution function, it is easily found that

o&(> p )

- at = p:[Kg(po) - % Kpi) F(po) - Deff(po) g% (po)]

4nc

F

0 / 2 2 JEEAY PR TS
+f dp pz[pQ(p) + (F(p) - 3 Kkp® - podp)) F(p)-D_,.(p)

s

(p)

I
J .

(5.5.2)

As an alternative to injection or stochastic acceleration, the term ?(p)
has been added here to represent any steady, nonrandom force which may
be working to accelerate particles; all other symbols have appeared in
previous equations. If it were desired to consider F in any of the
preceding sections, this could be done by noting that it always enters
the equations in the same way as does -(2/3)Kp2.

Finally, we shall have occasion in the next chapter to discuss
whether some information may be found about the relative magnitude, shape,
and/or total energy content of the distribution functions for two differ-

ent species of particles in the same region of space, when neither function
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is known individually in detail. For the purpose of eventual further
exploration along that line, we derive an equation here for the ratio of

proton and electron distribution functions,

F (p,t)

= ; (5.5.3)
Fe p,t

R(p,t)

both functions are being assumed isotropic again for simplicity, in the
'model term" sense mentioned at the beginning of this chapter. "Injec-
tion" terms are not well suited to the present argument and are omitted,
and only energies well above one BeV are considered, so that the two
species will have essentially identical kinematic properties. Then the
accelerating force ?(p) will be the same for both; if waves of opposite
circular polarizations and z-velocities have equal strengths, Deff(p)
will also be the same; the loss rate a(p) would be the same for loss
by escape, but insofar as it represents loss by nuclear reaction it may
be quite different; and since K depends upon rest mass as the negative
fourth power, the radiation term may be set to zero for the protons.

Then the distribution functions in these approximations satisfy

OF OF
_J_ 19|22 2 _ 19 |2 il
Y p2 Sp [p (3 Sje Kp f(p)>FJ] + pz 6; [p Deff(p) ?ﬁ%] OﬁJ.(p)Fj

Now the equation for electrons (j = e) is multiplied by R(p,t),
and in the equation for protons (j =p) Fp is replaced by RFe; the
difference between these two results gives the desired equation for R,

with only a weak dependence on Fe:

Ol1nF A1nF
OR _ 2 e g el R 1 O} 2 OR| _
St 3 Kp<4 +p E—>R - <f— 2D . —-5—p> 5 * —55;[p D_se 63] (ozp—ae)R .

p
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A limitation on the use of this equation is that a reasonable boundary
condition must be supplied at some minimum energy. A similar procedure
might be followed for the ratios of numbers of heavier particles of
charge Z to number of protons (for application to the cosmic-ray abun-
dance problem), but it would be made more difficult by the dependence of

5 and (especially) De upon Z.

ff
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Chapter 6

ASTROPHYSICAL APPLICATIONS

I. Introduction

The theory developed in the preceding chapters is now to be compared
with the observational evidence about the actual occurrence of high-energy
particles in nature. The main emphasis of this disucssion will be upon
quasars, because of their great current interest, because of the impor-
tant unsolved problems they present, and because they seem to be the most
outstanding examples of the general high-energy phenomenon. Radio gal-
axies, supernovae, cosmic rays, etc., will be mentioned in parallel when-
ever it seems that they can aid our understanding.

When this study was undertaken, it was not anticipated that such a
full development of the abstract stochastic acceleration problem would be
included. But since that has proved necessary, there has been a corre-
sponding reduction in the effort which could be devoted to the material
of this chapter, so it will be understood that this is only a preliminary
treatment of the applications. That is, part of the original'program re-
mains to be completed, and one of the most important goals of this chapter
is to indicate in what directions further study should proceed in order to

realize the full potential of both the theory and the observational data.

II. Spatial Structures

The function of this section will be largely to provide some founda-
tion for the following one, where there will be a more direct relevance
of the data to the models of the preceding chapters. Only the origin of
the continuous spectrum of electromagnetic radiation is considered here;
the emission and absorption lines present a formidable problem by them-
selves, and they seem to arise mostly in regions and conditions which
differ from those for the continuum. There also seems to be an anticor-
relation between the presence of absorption lines and of the variations
which are to be considered below.103 Thus the following remarks will con-
cern the central '"point sources,'" the optical jets or filaments associated

with a few of these objects, and the external radio clouds.
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By '"point source'" we mean the very compact central object referred
to by the optical identification of a quasar, which apparently is the
site of the original explosion that produces the other phenomena. We
shall not attempt to use any of our results above to account for the high-
frequency radiation of the point source, for it probably cannot be syn-
chrotron radiation. This has been argued on the basis of competition
from the inverse Compton process by Hoyle, Burbidge, and Sargent.104'48
Also, Hazard, Gulkis, and Bray105 have pointed out that Dent's observa-
tion of variation at 8000 Megacycles in the source 302733,106 together
with the absence of self-absorption down to at least 410 Mc, implies (on
the assumption of cosmological distance) either that there is a remarkably
great change in angular size of the source between frequencies 1420 and
8000 Mc or else that the radiation cannot be from the synchrotron mecha-
nism. Ginzburg and Ozernoi53 have presented a case for a collective ra-
diation mechanism, which deserves further investigation; this seems to
be the only reasonable way, if the quasar redshifts are cosmological, to
account for the observed high brightness temperatures.107

The jet associated with 3C273 is the most striking example of a phe-
nomenon also observed in such sources as 3C48, 3C279, 3C287, and M87.
These provide important evidence about the ages of these objects and about
the violent nature of the underlying explosions. They can be interpreted
somewhat independently of the more drastic conditions in the nucleus of
a quasar, and their radiation definitely seems due to the synchrotron
mechanism., Recent observations of polarizations at 6-cm wavelength indi-
cate108 an average magnetic field parallel to the jet or nebulosity in
each of the sources mentioned above, Similar evidence has been obtained
at optical frequencies by Hiltnerlo9 and by Kinman.110

Besides the radio emission associated with the "point source,'" there
are sometimes one or more associated "radio clouds." These show the ex-
istence outside the nuclei of limited regions which contain turbulent
plasma; they present the problem of deciding whether they result entirely
from the directional nature of the original explosion, or whether they
are also subject to confinement, either in the usual sense of plasma con-
tainment by magnetic fields or perhaps by the hydromagnetic self-attrac-

tion suggested by Parker for interstellar clouds.111 Our discussion will
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not go into the question of the effect upon the radio spectrum of adia-
batic deceleration in such a cloud if it should be expanding, for this
has been dealt wilh by Kardashev67 and by van der Laan.112

Many of these phenomena are paralleled, as we emphasized in Chapter 1,
in other objects. We may note in addition here that, besides an extended
turbulent, filamentary structure radiating an intense synchrotron con-
tinuum, the Crab Nebula also has a "point source" which is optically
obscured but has been the subject of recent investigations at radio fre-

quencies. This region also seems to require interpretation with a collec-

tive emission mechanism.

II1. Spectral Properties

The most immediately outstanding thing about the spectra of extra-
galactic radio sources is their nonthermal nature. Most of these spectra
may be fitted quite well by a power law in frequency, with different

values of the spectral index occurring about as shown in Fig. 8. This
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histogram is taken from Kellermann101 and is nearly the same as his earlier
version;113 it represents all high-galactic-latitude sources, whether op-

tically identified or not, with the spectral indices being fitted over the
range 38-1400 Mc. Figure 9 shows a similar distribution for the more lim-

ited sample obtained by using only 66 sources known to be quasars, and
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limiting the fitting of the spectral indices to higher frequencies to
avoid inclusion of points lowered by self-absorption. Indices fitted be-
tween 750 and 1400 Mc were available for 46 of these from the NRAO cata-
1og,114 and for the remaining 20 an index for either 408 or 960 to 1410
Mc was calculated from flux data compiled by P. Feldman from several
sources. The spectral indices of quasars are seen to be quite similar to
those of extragalactic sources as a whole. But the significance of these
histograms should not be overestimated, for they do not adequately repre-
sent the considerable fraction of sources which show curvature (on a log
I vs log v plot) or variability in their spectra. The radio spectra of

a few of these sources are known up to 8000 Mc;115 3C273 is still the
exception in having fairly detailed observations of its optical contin-
m116 and some isolated information in the infrared117 and milli-

118,119
meter ranges.

uu

The second important spectral property is variability; this has now
been observed with certainty in at least five quasars and with high like-
lihood in eight more,103 although there are others for which repeated ob-
servations have not detected any change. This property is also shared
by at least one radio galaxy, the Seyfert galaxy NGC 1275.120 The two
most notable examples are 3C273, for which optical fluctuations over at
least the last 75 years have been established from the Harvard plate col-

21
1ection,1 and 3C446, which in the late summer of 1966 exhibited irregular
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fluctuations over a range of two or three magnitudes at rates as high
as 0.2 magnitudes per day.lzz In the latter case, the optical polariza-
tion has also been observed to vary, apparently in close correlation with
the changes in total magnitude.110 Detailed information on the radio
variations of several objects has recently been given by Pauliny-Toth and
Kellermann.123

The model with which Kellermann101 attempts to explain these spectral
indices and variations calls for the existence of some process capable of

injecting isotropic bursts of energetic electrons with a power-law spec-

trum equivalent to n = 1,5:
o(p,t) = A p>°® 5(t-t,) , i=0,1,2,... . (6.3.1)

Each of the series of injection times ti is supposed to follow the pre-
ceding one by an interval of the order of some definite scale To. Then
sources with spectral index 0.25 are explained as exhibiting radiation
from a fresh burst according to equation (4.1.2), being observed within
a shorter time after the burst than the radiative lifetime at the obser-
vation frequency. The preponderance of sources with spectral index 0,75
is explained as showing equilibrium between injection and radiative loss,
according to equation (4.4,5); the radiative lifetime is supposed to be
greater than T0 so that the bursts of par
a continuous injection. Finally, sources with spectral index 1.33 are
explained according to equation (4.3.15); it is supposed that, at the time
and frequency of observation, the elapsed time since the last burst has
been greater than the radiative lifetime of a particle with pitch angle
ﬁ/2 but still less than To. This model suggests that the radiation of
sources with flat spectra may be likely to vary irregularly; for those
with "normal' spectra, it may be fairly constant in time; and for those
with very steep spectra, it should be smoothly decreasing, following equa-
tion (4.3.16).

The positive accomplishments of this model are (1) to show some causal
relationship among the three apparently significant numbers 0.25, 0,75, and
1.3; (2) to predict the association of flat spectra with variability, which

appears to be true; and (3) to suggest a development in time for the spectral
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contribution of a new burst which fits qualitatively with the available
data.123 Besides the fact that it makes no pretension of accounting for
the origin of the spectrum of the injected particles, this explanation
has some other possible weaknesses: (1) the injection process is not
likely to be isotropic; (2) the uniformity of field strength is a rela-
tively innocuous assumption, but it would still be desirable not to de-
pend on it; (3) there is a considerable spread of indices around the
canonical values, so the exponent 1.5 for the energy spectrum of injected
particles would be universal in only an approximate sense; (4) the 0.25
explanation of flatter spectra still seems somewhat unnatural to this
writer, and Kellermann actually uses self-absorption instead in explain-
ing the shapes of transient components; (5) the inadequacy of present
observations is no fault of the model, but still prevents a conclusive
comparison of detailed predictions; and (6) the 1,33 explanation of
steeper spectra seems incompatible with our belief that the plasma is
turbulent. In order to show this last point, the time scale for mag-
netic scattering may be compared with that for radiative energy loss,
just as it was compared with the Coulomb scattering time in equation
(3.5.5). For illustration, consider a 5 X 1010 eV electron radiating
at centimeter wavelengths in a field of order 10—4 gauss, with fluc-
tuation amplitudes of 10 percent; then for n = 2 in equation (3.5.3)
it is found that the scattering time will be less than the radiation
time for any value of the fluctuation coherence time TC between about
10—7 and 101l seconds,
Therefore, without detracting from the value of Kellermann's sug-
gestions, we believe that at this stage, the construction of alternative
models should still be pursued. Any possible explanation for the "in~
jected" woled spectrum must also be carefully studied; hence we remark
here on the cases in previous chapters for which power-law spectra were
found. First, equation (5.3.5) may be dismissed because it can only
account for an exponent greater than two, and because the description of
this process above as an injection is incompatible with its being the re-
sult of an equilibrium involving radiation. It might be more reasonable
to use equation (5.4.3), for an instability could be driving a strong

acceleration in a small and leaky region, the leakage constituting the
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injection into a much larger surrounding region. To obtain n = 1,5,
the exponent of the stochastic acceleration coefficient in (5.4.2) should

be

2
P O/D
.5 - ———57235 . (6.3.2)

1]
[\

wlw
wjor

But here again there is the problem of explaining why the ratio a/b
should always be the same., One possible answer is that the dependence

is only weak and the canonical 1.5 only approximate; for'example if

m = 2 +then values of a/b ranging from zero to four would only cause

n to vary between one and two, and the corresponding steady-state radi-
ation spectrum indices of 0.5 to 1.0 might easily fit the distribution

of Fig. 9. Alternatively, one might argue that the acceleration alone
determines the spectrum; that is; a/b <1, and m = 2.5 would be in-
terpreted as a unique number which should be predictable when the natural
spectrum of plasma turbulence is sufficiently well understood.

Finally, it méy be argued that this injection should not be thought
of merely as a steady state of processes operating on a shorter time scale,
but as probably involving time-dependent spectra. If there is still to
be something unique about the spectral shape, self-similar spectra are the
ones to be considered. If stochastic acceleration alone is considered,

again with

m
Dsee=PP , (6.3.3)
then there are self-similar solutions
F(p,t) @ t exp| - _—_E_E_— ; (6.3.4)
(2—m) bt

these are generalizations of (3.4.1). They are of the wrong shape to be
of interest, except in the singular case m = 2, for which there appears

an additional undetermined constant C:
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ct - + 2
(o + 2)

F(p,t) T e (6.3.5)

with
1
=3 [— 1 + 9+4C/b] . (6.3.6)

The only way to determine a value of n here is to refer to another level
of M"initial conditions, ™" so this is not a satisfactory explanation.

Our preliminary conclusion on this matter is that two, and perhaps
three, processes are important in determining these nonthermal radio spec-
tra: First, stochastic acceleration is reasonable both as to estimates
of acceleration rate124 and as to its dependence on particle energy (from
arguments immediately above and in Section VI of Chapter 3), while the
existence of any alternative coherent ccceleration process which could
account for these properties seems practically impossible. Second, we
believe that the radiation loss plays an important role in this determina-
tion, and must be included in any model which might extend or replace
Kellermann's., Third, loss of particles by escape or nuclear reaction is
probably not a prime determinant, but as was noted above, it could well
account for a spread of spectral properties about the canonical values

that would otherwise result from the acceleration and radiation loss.

1V, Maximum and Total Energies and Cosmic Rays

The maximum energy which any particles may be expected to attain will
depend in general not only on the nature and strength of the accelerating
and decelerating processes, but also on the length of time they have been
in operation. This is illustrated on page 9 of Reference 124, where the
stochastic acceleration of electrons in the jet of 3C273 is estimated by

9 5
a simple random-walk argument. A total of 10 steps over a period of 10

years leads to an "average energy gain' of 1013 eV, But a 1013 eV electron
in the assumed field of 4 X 10—5 gauss will lose energy by radiating at
about 102 eV sec—l, so the "average particle" will never attain much over
1012 eV; but this is still sufficient, even rather liberal, to account for

the observed optical synchrotron radiation.
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The same arguments should apply to a proton, without any reduction
for radiation loss. But we wish to point out a pitfall in another argu-
ment that was given by Sturrock to estimate acceleration rates.125 There

12,
it was said that 10 3

eV electrons continue to be present, although ra-
diating at 101'3 eV sec-l, so that there must be an acceleration process
working upon them at the same rate; then this acceleration rate is applied
to protons also, to estimate that they would achieve energies in excess
of 1013'8 eV. But this is essentially a single-particle estimate, and
it should be kept in mind that if this acceleration is of a statistical
nature, its effective rate of action will depend upon what spectrum of
particles has already been generated. By referring to equation (5.5.2),
it may be seen that the rate of energy gain from stochastic acceleration
is proportional to -(JF/dp), so that an electron spectrum which was
steepened by radiation loss could be absorbing more power per particle
on the average than the proton spectrum which would develop under the
same fluctuating fields. On the other hand, one must not be misled by
casual inspection of (5.3.1) into thinking that this average acceleration
rate is ever likely to vanish; for even if the protons should attain a
stationary spectrum (aF/Bt = 0) over some range of momenta, there would
still be a nonzero current of particles flowing outward in momentum space.
Since it appears that protons with energy of 1013 eV or more may be
generated in the jet of 3C273, one may surmise that the nuclei of quasars
could have sufficiently stronger turbulent fields to accelerate protons
to energies one or a few orders of magnitude greater than this; but it is
more difficult to make direct estimates. The possibility remains open
that these objects could be significant generators of primary cosmic rays.
This calls for closer study of several points, as we shall outline in the
remainder of this section. »
First,‘there must obviously be greater certainty about the maximum
attainable energies which were estimated above. In the present state of
the field, no estimate which depends on detailed analysis of a particular
model of quasars is likely to be widely accepted. But if one attempts to
make an estimate which will depend entirely upon observed quantities, not
only is there a scarcity of the kind of data that would be needed, but

as long as the local-cosmological dispute remains unsettled there will

not even be agreement upon what has really been observed.
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Second, the proper particle spectrum must be accounted for, and
this may still be the most difficult part of the problem. The Kellermann
model would suggest injection of protons with the same spectrum as the

injected electrons,

NwW) c w1

, (6.4.1)
but the observed cosmic ray spectrum varies as W_z'5 (see Chapter 1,
Section IID). The electron spectrum is eventually steepened to an ex-
ponent 2.5 by radiation losses, but the same process for protons would
require very strong magnetic fields and does not seem to be a reasonable
possibility.124 The probability for a particle to escape from the gen-
erating object into intergalactic space would depend on energy, but this
would be expected only to flatten rather than steepen the spectrum. Thus
it appears that cosmic ray protons and radiating electrons will not be
naturally explained as both being products of the same set of processes
and conditions, unless the Kellermann model is somehow altered or replaced.

Third, the question of the relative total energies gained by all

97
electrons and by all protons must be studied. Let the ratio be

&
« = —_protoms (6.4.2)

r
electrons

The value Kr >~ 100 has often been used, and is based on the relative
abundance of electrons in the cosmic rays observed in the vicinity of the
earth; but this involves accounting for the electrons as '"secondaries,"

or products of nuclear collisions of the positively charged primary nuclei,
and does not seem a relevant estimate when the simultaneous generation of
both species as '"primaries" is being considered. There are, however,

other reasons which we may describe qualitatively for expecting Kr to

be much greater than unity: Other things being equal, electrons are sub-
Ject to radiation loss and protons are not, which ought to leave the pro-
tons with greater total energy; and the "selection rules" under which the

acceleration begins seem to strongly favor the protons. Referring to the
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discussion in Sections IV and VI of Chapter 3, we see that the electrons
as they start from nonrelativistic energies have a much higher gyrofre-
quency than the protons and so are accelerated by waves of higher frequency
and presumably smaller amplitude. Furthermore, they may have difficulty
as their gyrofrequencies decrease in crossing the gap where the fluctua-
tion spectrum is depleted by acting upon thermal protons; and only above
10 BeV may they be expected to gain equal footing with the protons. Yet

45,107
other reasons may be cited '’

for believing that Kr <1, so a more
careful weighing of these arguments will be necessary.

Finally, the total rate of production by the whole class of sources
must be computed; this may be done for quasars in the same way it was
done earlier for radio galaxies by Burbidge and Hoyle.60 There have now
been around 100 quasars observed; suppose that these represent a complete
sampling out to a distance corresponding to redshift =z = 2. For a Hubble

constant H = 100 km sec—1 Mpc 1 this would be about 1028'3 cm, and would
make an average of 10_85'5 quasar per cubic centimeter. Taking figures
suggested by Pauliny-Toth and Kellermann,123 suppose that each active
quasar is repeatedly producing 1058'5 ergs in bursts of relativistic elec-
trons repeated on a scale of 10 years, or 108'5 seconds. As we remarked
above, the ratio of proton and electron energies produced in these bursts
is uncertain, but let us use the value Kr = 1, which is hopefully a con-
servative estimate. Then the average rate of production of high-energy
protons would be 10—35'5 erg sec—1 cm-3, and if this were to accumulate
(and be evenly distributed) over the "lifetime of the universe," about

10 . -18
10 years, it could account for an energy density of around 10 erg

- -12 -
cm 3. This is considerably below the 10 erg cm 3 observed for cosmic
rays near the earth, and also compares unfavorably with the Burbidge and

"131 erg cm-3 for radio galaxies.

Hoyle estimate of 10
Although redshifts have only been determined for about 100 quasars,
the idea is again being advanced126 that there are some 105 of these ob-
jects over the whole sky (down to blue magnitude 19.7), but that most of
these have been observationally discriminated against because they are
radio-quiet. If one were prepared to believe that all of these objects

generate energy at the same rate as those with "active" radio spectra,

the estimate above for the cosmic-ray energy density due to quasars could
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-15 -3 A . .
be increased to 10 erg cm . This is still quite low, but could
possibly be a significant contribution to a '"universal cosmic ray dis-
tribution" which, according to some models, is being observed at energies
‘ 16
0

above the cutoff for the Galactic cosmic rays at 1015 or 1 ev.

V. General Conclusions and Suggestions

1. We believe that stochastic acceleration in some form is impor-
tant in the generation of high-energy particles in nature, and that this
will form an integral part of the ultimately accepted explanation; in
particular, it seems likely that this stochastic acceleration is to be
connected with plasma turbulence. Not only is there a lack of reasonable
alternatives, but we believe that the present work has made some steps
toward showing that the stochastic mechanism is itself quite reasonable,
We think it is worthwhile to begin forging additional links necessary to
this chain of reasoning: first, to classify modes of oscillation in a
magnetized plasma and to specify for each class the relation of field
amplitudes to mode amplitudes for arbitrary polarizations and directions
of propagation; and second, to search for a theory of mode amplitudes in
a quasi-equilibrium state. The latter problem will require a thorough
understanding of both similarities and differences between the turbulent
states of plasmas and of ordinary fluids,127 and may well profit from a
partly numerical approach.128

2. Although we have stressed the problem of quasars in this work,
we are hopeful that our ideas may be of use in several sites of appli-
cation, such as those outlined in Chapter 1. Evidence for the occurrence
of explosions in galactic nuclei has been reviewed by Burbidge, Burbidge,
and Sandage; 2 and we are inclined toward positive views, somewhat sim-
ilar to those of Shklovskii,130 in regard to the possibility of a close
generic relationship among quasars and radio, Seyfert, and normal galaxies.

3. For reasons given in Chapter 3, we have suggested that stochastic
acceleration is most likely to occur as a transverse cyclotron-resonance
effect of low-frequency (hydromagnetic) waves, rather than being connected

with electromagnetic or longitudinal ("plasma wave") modes.
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4, Since only one phase of the problem was selected for treatment
in this work, the origin of the '"magic exponent™" 1.5 or 2.5 for energetic-
particle spectra has not been fully explained. But one should now be
prepared to watch carefully as theories of plasma turbulence are devel-

oped for a natural spectrum of fluctuations

with either n = 2.5 precisely, or else n < 2.5. An explanation of the
observed radiation spectra in terms of such a turbulence spectrum would
immediately be suggested in either case by the discussion following equa-
tion (6.3.2).

5. Although the conclusions in Section IV of this chapter do not
encourage the belief that acceleration of protons in quasars accounts
for the major portion of the observed cosmic rays, our line of reasoning
suggests that the acceleration in quasars is a manifestation of a univer-
sal spectrum of turbulence which is also present in the objects (e.g.,
supernovae) which do supply the cosmic rays. Therefore it is still of
great interest to find some way of fitting the acceleration of electrons
to a W-l'5 spectrum and protons to W-z'5 both into the same picture.

6. In attempting to remove the test-particle restrictions of the
present model, one shouid consider the possibility of simply estimating
a rate of depletion of plasma turbulence energy and using this heuris-
tically to delineate the circumstances for which this depletion is an
important determining factor. This would be somewhat similar to Parker's
use of the concept of a "cosmic ray gas" coextensive with the ordinary
interstellar gas, with which he has shown that cosmic rays have an effec-
tive pressure which is important in certain galactic processes.131

7. As data accumulate in the new fields of X~ and gamma-ray astron-
omy, some of it will bear upon the problems we have considered here, and
should be studied accordingly.

8. As to what further observations would be helpful, we can only
urge several things that are already obvious: (a) coordinated observa-

tions of variable radio sources at more frequent time intervals and more

closely spaced spectral frequencies, in order to obtain something more
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nearly approaching a '"sweep-frequency record" of their outbursts; (b)
better establishment of radiation spectra at microwave and infrared
frequencies, and particularly in the difficult region between these; and
(c) laboratory study of steady weak turbulence in plasmas, especially
that directed toward establishing the form of the natural turbulence
spectrum.

9. Although we have felt it possible to formulate some correct
ideas within this limited framework, one's mind should be kept open, as
more detailed theories become possible, toward the inclusion at appro-
priate points of several effects which we have omitted. These might in-
clude bremsstrahlung and collective effects53 (particularly for the nuclei
or '"point objects" and for high frequencies), energy loss in adiabatic
expansion,67 and (for low frequencies) inverse bremsstrahlung, synchrotron
self-absorption and the "Tsytovich effect."loo Finally, one additional
effect of possible importance is the inverse Compton efi’ect.48 As a first
approximation, this may be treated as synchrotron radiation in the mag-
netic fields of a flux of low-energy photons, and it is in this sense
that some of our results above may still be used in the presence of this
effect. But to be more exact, one should use further details of the cor-
rect theory presented by Felten and Morrison.132 Woltjer has attempted133
to avoid the introduction of the inverse Compton effect by postulating
electron injection only into a rather narrow cone about the direction of
the magnetic field, but this jidea would seem strained beyond reasonable-

134
ness to account for the recent observations of Wampler on 3C446.

"That which is far off, and exceeding deep,

Who can find it out?"

--Ecclesiastes 7:24
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Appendix A

COMPLEX VECTOR COMPONENTS

It proves convenient in some of our work to use the quantities

A ~ ~ ~ ~ A
X, =x+ 1y, ¥ =x -1y . (A.1)
It should be kept clearly in mind that §+ and §_, as they have been

chosen here, are not actually unit vectors, nor are they self-dual. But
rather than carry along a distinction between covariant and contravariant
vectors, we shall just follow the conventions listed below, in the spirit
that this is a notational shorthand for which the only requirement is that
everything turn out correctly whenever translated back to normal Cartesian

components. If a and b are arbitrary vectors, we write

a =a_ + iay , a_=a_ - iay , (A.2)
a =32(a +a) a_ = -5i(a - a ) (A.3)
x 2Ny - y + -7 )
so that
a+b=ab +ab +ab =2ab +%ab +ab . (aA.4)
x X vy z z + - -+ z z

The thing potentially most confusing in this notation is the distinction

between the p-component of the gradient vector and the formal derivative

with respect to the corresponding variable:

8 _ 1[0 8\ 1 9 _1fo ., 28\ _1

a—’;: = 2<'a—x - 1 ay) = 2v_ ’ 8x_ - 2(ax + 1 ay) - 2v+ L (A's)
0 _ 9 , 9 I - R I
5x ~ 5x, " ox_' 3y i(ax+ ax_) ' (a.6)



so that
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Appendix B
SYMMETRY PROPERTIES
It is useful in several places to know a few special properties of the
correlation and spectrum functions of stationary, homogeneous turbulence in

a uniform plasma; these will be briefly summarized here. First, it follows

immediately from the definition (3.1.5) that
Raﬁ(g,T) = Rm(_gr_'r) ’ (Bl)
and then from this and (3.1.7) that
PQ > QP, —
SaB(k,w) = Saa(—k,—w) . (B.2)

Second, the fields E and B are real, so the correlation functions must
be also except insofar as complex directions have been used in the sub-
scripts:

R2E0) = =2,E . (5.3)
(6] = R

04
Then for the spectrum function we have

—

[s;g(i{, w):r = sg*g*(-i’,—w) = Sg*g*(k,w) ) (B.4)

In the case discussed in Chapter 3, Section III, where the statistical
properties of the fields are assumed to have cylindrical symmetry, a rota-

tion about the 2z axis amounts to a mere relabeling and must leave the

spectrum function unchanged:

SaB(kl,Q,k”,w) = %J'B'(kl’¢ + W,kH,w) . (B.5)

Here (' and PB' stand for those directions obtained by rotating vectors

in the @ and B directions through the angle V¥ about the 2z axis;
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for example, @ =z - Q' =2 for any V¥, and o =x->q' =y for

¥ = n/2. It is particularly convenient now to be working with the complex
coordinates Xy because the operation of rotation through the angle V
is then accomplished merely by multiplying with a factor éFiw for each
subscript +. By letting V¥ take the value -¢ we can see that the en-

tire angular dependence of %aﬁ is given in this case by

ﬁlﬁcr ei(a—b)Q , (B.6)

where a is the number of + and b the number of - subscripts in-
cluded in o and PB. Then the angular part of Idsk can immediately be
carried out in (3.3.15), etc.

102




Appendix C

EVALUATION OF INTEGRALS

When (2.4.8) is being calculated in the presence of a magnetic field

Bo’ we must evaluate integrals of the form
27 . t ' :
L(p)e> = '211'{ d¢ ﬁQB(;'(t),t)elp’(Qt'¢) f dt'APa(;'(t'),t')elv(Qt —¢)>
0 —®

1l

L fzgy& ftdt' RPQ[S?'(t) - ;'(t'),t—t']ei“(m_m + 1v(at'-g)
o) _

2% © ap

(c.1)

where u and v may be O or *1 and the present @ was called ¢0 in
(3.3.4). 1In the limit of small gyroradius we could abbreviate all the
arguments of R in this equation by (t-t') and have a simple answer as
with equation (3.2.4); but in the general case x'(t) - x'(t'), the sep-
aration between two points on a helix, given by (3.3.1) and (3.3.2), is
not a function of the difference t-t' alone. The use of the spectrum
function gives a way of separating the field properties (in the correlation

function R itself) from the particle-orbit properties (in the arguments

of R):

L(p,9) =fd3kfdw sgg(ﬁ,w) M(p,6,k,w) ,

25 t
M= 21_11 j; ag i dt' exp[iu(9t~¢) + 1v(at'-g)

@

s AR (F(E) - (")) - 1w(t—t')] .

(c.2)

We use cylindrical coordinates in k-space, with azimuthal angle ¢, to

write
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. - - . t-t! t+t' '
K« (x'(t) - x'(t')) = 2k_Lrg sin|G——| cos|0—5— - g + (p] + k“VH(t—t )
|
(c.3)
The variables are untangled by defining the new quantity
B' = 4 - ¢ - Za(t+t') ; (c.4)

all domains of width 2x in this variable are equivalent, and we have

simply |

27 t |
M = -213; j(; ag’ fdt' exp[j,u(%n(t—t') g - ) + div(-3a(t-t') - 4" - @) |

+ iZkLrg cos @' sin 30(t-t') + i(kHv”—w)(t—t'):' . (c.5)

Now we have only to use the identity
gl sin ¥ Z ei™ g (u) (c.s)
to achieve complete separation of the two integrals. One of them,

t , ,
fdt' els(t_t ) = n8(s) - P(i/s) , (c.7)

[eo]

was already used in (3.2.5); ©&(s) is the Dirac delta-function and P

denotes '"principal value" for subsequent integration over s. The other,
2

HtV _1 'i(H+V)¢ Cc.8

I (k_Lrg) = 5 j(.) dg e Jm(ZkJ_rg cos §) , (c.8)

is the (p+v)th Fourier component of a certain function over the domain
(O,Zn) and may be found as follows. Abbreviating up+v by q and klrg
by x, we use one form of "Bessel's Integral' to write

m 21

1%(x) = 1 fd¢ -iqf 1n fzge ei(m9—2x cos P sin 6) . (c.9)
0
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Now we use the identity
2 cos B sin 6 = sin(@+6) - sin(f-9) (c.10)

and (C.6) twice more to obtain

27 27
9y = -2 Ji(mo-ag)
tgx) = (207" [Cap [Cao

0

i i o-ir(f+e) + is(d-e) 3 (x)3 (x) . (c.11)

r=<00 S==00
The integrals here are merely Kronecker deltas requiring that
q+r-s5=0, m-r-s'=0, (c.12)

so q and m must be either both even or both odd for a non zero result,

and it is surprisingly simple:

13(x) =3 (x) 3 (x). (c.13)

Negative indices are always easily replaced by positive ones according to
-q _ <4 AR L
I (x) = Im(x) = (-1) I_m(x) . (c.14)

There is an interesting curiosity which makes it quite easy to write
the power series expansion of Iz(x). The coefficients will be sums of

products of Bessel function coefficients:

(_1)j+k (x/z)r+s+2j+2k
J'(r+3)! k!(s+k)!

s
T8

Jr(x)Js(x)

i i i i;l)u (x/z)r+s+2u

(u-k)!(r+u-k)! k!(s+k)!
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=SS G| Sl

s+u u! (r+s+u)! !

) :E: (r+s+2u) (-1)" (x/2)"*5*2" (c.15)

so that

Jos) u m+2u
9 = > (eme) iy (c.16)
u=0 2

The sum of products of binomial coefficients
in the third line of (C.15) is like a scalar
product of one row of the Pascal Triangle
with part of another row--the circled
elements in the diagram at the right. e ’.'_
The answer is also a member of this

array (the boxed element), hence T

the simple result above.
Returning now to the evaluation of equation (C.5), we put (C.7) and

(c.13) together with a nev index n = (m+u-v). The final result is

_-i(pv)e N _ I T
M=e :S Jn_u(klrg)Jn+v(klrg)[ﬁS(k”v”+nQ w) + P k”v”+n0_w] ,

n=-w

(c.17)

which was used in (C.2) to write (3.3.15) and subsequent equations. The
vanishing of (3.3.18) and (3.3.19) is shown by simultaneously changing the
signs of the dummy variables k,w and n and using (B.4). This also
accounts for the disappearance of all terms with Jan and of either

+1
the principle-value or the delta-function part of some other terms.
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Appendix D

ALTERNATIVE FORMS FOR MOMENTUM-SPACE DIFFUSION

It is possible that the reader may consider the mixed notation of

equation (3.3.22) confusing and prefer to carry through the evaluation of

(3.3.14) entirely in one of the standard coordinate systems; we will record

such formulae here. First, in cylindrical coordinates, the momentum-space

diffusion is given by
DF\ _ 8 [5 BF| 1 o [, 5 OF
(Dt) - BpH [ézz BpH] + P, 8p_L [plDtt BpL]

PP
d [- ai] 1 3 [ - af«*]
+ 57— |D ., o~ —|+—=— 2% |p D, —
BpH zt ap_L P 8pl 17tz BP”

with
D =T -sine (T, +T )+ sinZ 6 T
zz ZZ 0z z6 66 '’
D, =T, +coso (T, +T )+ cos? g T
tt tt ot to g6 ’
th = Pzt + cos @ er - sin © Pet - sin 6 cos 9 Pee
tz tz 0z to

The corresponding equations in spherical coordinates are

+ ;15 5 [Pﬁpe 3—%] ek :Si“ o D, %E
and
ﬁpp = sin2 2] ftt + cos © fzz + s8in 6 cos © (ftz + fzt) ,
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(D.1)

(p.2)

(D.3)

(D.4)

(D.5)

(D.8)



cos2 @ T, +sin® @l +T._ +cos® (fte + T

w2}
|

06 tt zZ 00 et)
- sin 0 (I‘ze + Pez) - sin 6 cos © (Ptz + th) , (p.7)
D =singcose (F,, -T )+ cos? 6 T - sin o T
po tt zZz zt tz
op tz zt
+sin 6 T o + cos 6 Tpo (p.8)
ot 6z

Either set of equations is completely equivalent to (3.3.22) and leads to

all of the same conclusions in the succeeding analysis.
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